Skip to main content
Log in

Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions

  • Application
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The increasing interest in wearable smart healthcare systems has sparked considerable attention toward flexible sensors owing to their high sensitivity and flexibility. However, these sensors still face challenges in terms of performance imbalances and instability. To address these issues, graphene-based conductive materials with exceptional mechanical and electrical properties have been incorporated into flexible sensors. Despite the potential of graphene, a comprehensive understanding of the sensing mechanisms and influence of fabrication methods on the performance of graphene-based flexible sensors is lacking. This article aims to bridge this gap by providing an overview of the latest research progress in flexible graphene sensors. We begin by analyzing the main properties of graphene materials, including tensile strength, specific surface area, thermal conductivity, and electrical conductivity. These properties highlight the superior characteristics of graphene for flexible sensor applications. The sensing mechanisms of strain/pressure, gas, and temperature flexible sensors are reviewed, with a focus on innovations in graphene composites, regular microstructures, and emerging preparation methods that enable an effective balance of the individual properties of a single flexible sensor. Furthermore, the article discusses graphene-based multifunctional flexible sensors that allow for the simultaneous monitoring of multiple stimuli, self-powered performance studies, and wireless communication performance studies. Performance analysis of these sensors in the context of flexible systems is provided. Finally, this article presents a comprehensive summary of flexible graphene sensors and offers an outlook for the future. We aim to provide theoretical guidance and technical support for the realization of individual whole-life physical sign detection using flexible graphene-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

Code availability

Code availability is not applicable to this article.

Abbreviations

A :

Cross-sectional area of the conductor

AgNPs :

Silver particles

AgNWs :

Silver nanowires

AuNWs :

Gold nanowires

CB :

Carbon black

CNTs :

Carbon nanotube

COVID-19 :

Corona Virus Disease 2019

CS :

Chitosan

d :

Distance between the Elastomer and conductor

e :

Quantum of electricity

GEM :

General effective media

GNPs :

Graphene nanosheets

GO :

Graphene oxide

h :

Planck's constant

IoT :

Internet of Things

J :

Tunneling current density

m :

Electron mass

MWCNTs :

Multi-walled carbon nanotubes

NR :

Natural rubber

NTC :

Negative temperature Coefficient

NWF :

Nonwoven fabric

PDMS :

Polydimethylsiloxane

PEDOT:PSS :

Poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid

Pl :

Poly milled imide

Pl :

Polymilled imide

PTC :

Positive temperature coefficient

PU :

Polyurethane

PVDF :

Polyvinylidene fluoride

R cn :

Resistance of the graphene body

RFID :

Radio frequency identification

rGO :

Reduced graphene oxide

RGOH :

Graphene oxide hydrogel

R Tunnel :

Tunnel resistance of graphene

SARS :

Severe Acute Respiratory Syndrome

SWCNTs :

Single-walled carbon nanotube

TCR :

Temperature coefficient of resistance

TENGs :

Frictional electric nanogenerators

V :

Electric potential

λ :

Height of the energy barrier of the elastomer

σ h :

Conductivity at which the formed conductive network is saturated

σ l :

Conductivity of the composite material with the unformed conductive network

σ m :

Electrical conductivity of the conductive filler material of the composite at φ

φ :

Volume concentration of the conductive filler material

φ c :

Denotes the seepage threshold

ω :

Morphological parameter of the composite

MEMS :

Microelectromechanical system

References

  1. Nguyen PQ, Soenksen LR, Donghia NM et al (2021) Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat Biotechnol 39:1366–1374. https://doi.org/10.1038/s41587-021-00950-3

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Liao B, Cheng L et al (2020) The microbial coinfection in COVID-19. Appl Microbiol Biotechnol 104:7777–7785. https://doi.org/10.1007/s00253-020-10814-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pham DM, Aziz SM (2021) FlexiS-a flexible sensor node platform for the internet of things. Sensors (Basel) 21:5154. https://doi.org/10.3390/s21155154

    Article  PubMed  Google Scholar 

  4. Kattenborn T, Leitloff J, Schiefer F et al (2021) Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens 173:24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010

    Article  Google Scholar 

  5. Liu X, Miao J, Fan Q et al (2022) Recent progress on smart fiber and textile based wearable strain sensors: materials. Fabr Appl Adv Fiber Mater 4:361–389. https://doi.org/10.1007/s42765-021-00126-3

    Article  CAS  Google Scholar 

  6. Zhang W, Miao J, Tian M et al (2023) Hierarchically interlocked helical conductive yarn enables ultra-stretchable electronics and smart fabrics. Chem Eng J 462:142279–142291. https://doi.org/10.1016/j.cej.2023.142279

    Article  CAS  Google Scholar 

  7. Basile V, Fontana G, Modica F et al (2022) Numerical and experimental study on protective film removal towards the automation of flexible electronics assembly. Int J Adv Manuf Tech 122:4375–4387. https://doi.org/10.1007/s00170-022-09884-9

    Article  Google Scholar 

  8. Ma Z, Xiang X, Shao L et al (2022) Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew Chem Int Ed Engl 61:e202200705. https://doi.org/10.1002/anie.202200705

    Article  CAS  PubMed  Google Scholar 

  9. Tiwari NK, Singh SP, Mondal D et al (2019) Flexible biomedical RF sensors to quantify the purity of medical grade glycerol and glucose concentrations. Int J Microwave Wirel Technol 12:120–130. https://doi.org/10.1017/s1759078719001089

    Article  Google Scholar 

  10. Li S, Feng X, Liu H et al (2019) Preparation and application of carbon nanotubes flexible sensors. J Semicond 40:111606. https://doi.org/10.1088/1674-4926/40/11/111606

    Article  CAS  Google Scholar 

  11. Peng Z, Zheng S, Zhang X et al (2022) Flexible wearable pressure sensor based on collagen fiber material. Micromachines (Basel) 13:694. https://doi.org/10.3390/mi13050694

    Article  PubMed  Google Scholar 

  12. Zhang H, Lowe A, Kalra A et al (2021) A flexible strain sensor based on embedded ionic liquid. Sensors (Basel) 21:5760. https://doi.org/10.3390/s21175760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moin A, Zhou A, Rahimi A et al (2020) A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat Electron 4:54–63. https://doi.org/10.1038/s41928-020-00510-8

    Article  Google Scholar 

  14. Zhou Z, Guo K, Yin F et al (2023) The dual-mode sensing of pressure and temperature based on multilayer structured flexible sensors for intelligent monitoring of human physiological information. Compos Sci Technol 238:110012–110022. https://doi.org/10.1016/j.compscitech.2023.110012

    Article  Google Scholar 

  15. Zhao SQ, Zheng PX, Cong HL et al (2021) Facile fabrication of flexible strain sensors with AgNPs-decorated CNTs based on nylon/PU fabrics through polydopamine templates. Appl Surf Sci 558:149931. https://doi.org/10.1016/j.apsusc.2021.149931

    Article  CAS  Google Scholar 

  16. Zhao Z, Li Q, Dong Y et al (2021) A wearable sensor based on gold nanowires/textile and its integrated smart glove for motion monitoring and gesture expression. Energy Technol 9:2100166. https://doi.org/10.1002/ente.202100166

    Article  Google Scholar 

  17. Kang Z, Li X, Zhao X et al (2022) Piezo-resistive flexible pressure sensor by blade-coating graphene-silver nanosheet-polymer nanocomposite. Nanomaterials (Basel) 13:4. https://doi.org/10.3390/nano13010004

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Chen T, Gooding JJ et al (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

  19. Tong L, Wang XX, Zhu JW et al (2018) Conductive twisted polyimide composite nanofiber ropes with improved tensile strength, thermal stability and high flexibility. J Phys D Appl Phys 51:485102. https://doi.org/10.1088/1361-6463/aae337

    Article  CAS  Google Scholar 

  20. Zheng J, Yan X, Li MM et al (2015) Electrospun aligned fibrous arrays and twisted ropes: fabrication, mechanical and electrical properties, and application in strain sensors. Nanoscale Res Lett 10:475. https://doi.org/10.1186/s11671-015-1184-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang C, Chen W, Chen Y et al (2021) Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao 0:2108017. https://doi.org/10.3866/pku.Whxb202108017

    Article  Google Scholar 

  22. Sui JX, Wang XX, Zhang XT et al (2020) Variable-range hopping conduction with positive and negative magnetoresistance transformation in reduced graphene oxide mesostructures. J Magn Magn Mater 498:166107. https://doi.org/10.1016/j.jmmm.2019.166107

    Article  CAS  Google Scholar 

  23. Shen C, Sun S, Zhang H et al (2022) Bioinspired ultrasensitive and flexible airflow sensor based on short carbon fiber network. Adv Mater Technol 8:2200571. https://doi.org/10.1002/admt.202200571

    Article  Google Scholar 

  24. Chen D, Li J, Sun K et al (2023) Graphene-reinforced metal matrix composites: fabrication, properties, and challenges. Int J Adv Manuf Tech 125:2925–2965. https://doi.org/10.1007/s00170-023-10886-4

    Article  Google Scholar 

  25. Ji C, Zhang Q, Jing Z et al (2021) Highly sensitive wearable flexible pressure sensor based on conductive carbon black/sponge. IEEE Trans Electron Devices 68:5198–5203. https://doi.org/10.1109/ted.2021.3103487

    Article  CAS  Google Scholar 

  26. Huang X, Yin Z, Li M (2022) A novel stretchable and flexible sensor using graphite-added optical waveguide for human motion detection. IEEE Sens J 22:14929–14936. https://doi.org/10.1109/jsen.2022.3188115

    Article  CAS  Google Scholar 

  27. An B, Ma Y, Li W et al (2016) Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chem Commun (Camb) 52:10948–10951. https://doi.org/10.1039/c6cc05910d

    Article  CAS  PubMed  Google Scholar 

  28. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  29. Schedin F, Geim AK, Morozov SV et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655. https://doi.org/10.1038/nmat1967

    Article  CAS  PubMed  Google Scholar 

  30. Li XS, Cai WW, An JH et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  PubMed  Google Scholar 

  31. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578. https://doi.org/10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  32. Xu S, Zhang Y, Jia L et al (2014) Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344:70–74. https://doi.org/10.1126/science.1250169

    Article  CAS  PubMed  Google Scholar 

  33. Lee H, Choi TK, Lee YB et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572. https://doi.org/10.1038/nnano.2016.38

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Wang Z, Li X et al (2017) Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11:4507–4513. https://doi.org/10.1021/acsnano.6b08027

    Article  CAS  PubMed  Google Scholar 

  35. Luo Y, Miao Y, Wang H et al (2023) Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Res 16:7600–7608. https://doi.org/10.1007/s12274-023-5382-y

    Article  CAS  Google Scholar 

  36. Zare Y, Rhee KY (2023) Multiphase approach for calculation of tunneling conductivity of graphene-polymer nanocomposites to optimize breast cancer biosensors. Compos Sci Technol 232:109852–109860. https://doi.org/10.1016/j.compscitech.2022.109852

    Article  CAS  Google Scholar 

  37. Liu T, Zhou L, Sun C et al (2023) Graphene wrapped hollow glass beads for polymer composites: from thermal insulators to conductors. Compos Sci Technol 233:109890–109899. https://doi.org/10.1016/j.compscitech.2022.109890

    Article  CAS  Google Scholar 

  38. Zhu L, Hao J, Xu B et al (2022) Study on the micro through holes machining using the electrochemical machining (ECM) method with a graphite electrode. Int J Adv Manuf Tech 121:6049–6057. https://doi.org/10.1007/s00170-022-09682-3

    Article  Google Scholar 

  39. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  40. Gong L, Kinloch IA, Young RJ et al (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697. https://doi.org/10.1002/adma.200904264

    Article  CAS  PubMed  Google Scholar 

  41. Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. https://doi.org/10.1038/nature06016

    Article  CAS  PubMed  Google Scholar 

  42. Kusmierek K, Swiatkowski A, Skrzypczynska K et al (2021) Adsorptive and electrochemical properties of carbon nanotubes, activated carbon, and graphene oxide with relatively similar specific surface area. Materials (Basel) 14:496. https://doi.org/10.3390/ma14030496

    Article  CAS  PubMed  Google Scholar 

  43. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  44. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  PubMed  Google Scholar 

  45. Uematsu Y, Netz RR, Bocquet L et al (2018) Crossover of the power-law exponent for carbon nanotube conductivity as a function of salinity. J Phys Chem B 122:2992–2997. https://doi.org/10.1021/acs.jpcb.8b01975

    Article  CAS  PubMed  Google Scholar 

  46. Singh I, Rehni AK, Kumar P et al (2009) Carbon nanotubes: synthesis, properties and pharmaceutical applications. Fullerenes Nanotubes Carbon Nanostruct 17:361–377. https://doi.org/10.1080/15363830903008018

    Article  CAS  Google Scholar 

  47. Han Z, Wang J, Liu S et al (2021) Electrospinning of neat graphene nanofibers. Adv Fiber Mater 4:268–279. https://doi.org/10.1007/s42765-021-00105-8

    Article  CAS  Google Scholar 

  48. Duan Y, He S, Wu J et al. (2022) Recent progress in flexible pressure sensor arrays. Nanomaterials (Basel). 12:https://doi.org/10.3390/nano12142495

  49. Blaszkiewicz M, McLachlan DS, Newnham RE (1991) Study of the volume fraction, temperature, and pressure dependence of the resistivity in a ceramic-polymer composite using a general effective media theory equation. J Mater Sci 26:5899–5903. https://doi.org/10.1007/bf01130131

    Article  CAS  Google Scholar 

  50. Tsu R, Esaki L (1973) Tunneling in a finite superlattice. Appl Phys Lett 22:562–564. https://doi.org/10.1063/1.1654509

    Article  CAS  Google Scholar 

  51. Amjadi M, Pichitpajongkit A, Lee S et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163. https://doi.org/10.1021/nn501204t

    Article  CAS  PubMed  Google Scholar 

  52. Obitayo W, Liu T (2012) A review: carbon nanotube-based piezoresistive strain sensors. J Sens 2012:1–15. https://doi.org/10.1155/2012/652438

    Article  Google Scholar 

  53. Lee C, Jug L, Meng E (2013) High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl Phys Lett 102:183511. https://doi.org/10.1063/1.4804580

    Article  CAS  Google Scholar 

  54. Wang G, Yang P, Chen B et al (2020) A novel combination of graphene and silver nanowires for entirely stretchable and ultrasensitive strain sensors: sandwich-based sensing films. Nanotechnology 31:135501. https://doi.org/10.1088/1361-6528/ab5dff

    Article  CAS  PubMed  Google Scholar 

  55. He Z, Byun J-H, Zhou G et al (2019) Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon 146:701–708. https://doi.org/10.1016/j.carbon.2019.02.060

    Article  CAS  Google Scholar 

  56. Han F, Li M, Ye H et al (2021) Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors. Nanomaterials (Basel). 11:https://doi.org/10.3390/nano11051220

  57. Li Q, Luo S, Wang Y et al (2019) Carbon based polyimide nanocomposites thin film strain sensors fabricated by ink-jet printing method. Sens Actuators A 300. https://doi.org/10.1016/j.sna.2019.111664

  58. Le VT, Vasseghian Y, Doan VD et al (2022) Flexible and high-sensitivity sensor based on Ti3C2-MoS2 MXene composite for the detection of toxic gases. Chemosphere 291:133025. https://doi.org/10.1016/j.chemosphere.2021.133025

    Article  CAS  PubMed  Google Scholar 

  59. Li K, Zhang J (2017) Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater 61:210–232. https://doi.org/10.1007/s40843-017-9154-2

    Article  CAS  Google Scholar 

  60. Zhang HD, Tang CC, Long YZ et al (2014) High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens Actuators A 219:123–127. https://doi.org/10.1016/j.sna.2014.09.005

    Article  CAS  Google Scholar 

  61. Zhang Q, Wang X, Fu J et al (2018) Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor. Materials (Basel) 11:1744. https://doi.org/10.3390/ma11091744

    Article  CAS  PubMed  Google Scholar 

  62. Peng Y, Li J (2013) Ammonia adsorption on graphene and graphene oxide: a first-principles study. Front Environ Sci Eng Chin 7:403–411. https://doi.org/10.1007/s11783-013-0491-6

    Article  MathSciNet  CAS  Google Scholar 

  63. Omidvar A, Mohajeri A (2014) Edge-functionalized graphene nanoflakes as selective gas sensors. Sens Actuators B 202:622–630. https://doi.org/10.1016/j.snb.2014.05.136

    Article  CAS  Google Scholar 

  64. Ren Z, Shi Y, Song T et al (2021) Flexible low-temperature ammonia gas sensor based on reduced graphene oxide and molybdenum disulfide. Chemosensors 9:345. https://doi.org/10.3390/chemosensors9120345

    Article  CAS  Google Scholar 

  65. Yue Q, Chang S, Qin S et al (2013) Functionalization of monolayer MoS2 by substitutional doping: a first-principles study. Phys Lett A 377:1362–1367. https://doi.org/10.1016/j.physleta.2013.03.034

    Article  CAS  Google Scholar 

  66. Qiu J, Hu X, Min X et al (2020) Observation of switchable dual-conductive channels and related nitric oxide gas-sensing properties in the N-rGO/ZnO heterogeneous structure. ACS Appl Mater Interfaces 12:19755–19767. https://doi.org/10.1021/acsami.9b20776

    Article  CAS  PubMed  Google Scholar 

  67. Mtz-Enriquez AI, Padmasree KP, Oliva AI et al (2020) Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microparticles. Sens Actuators B 305:127466–127477. https://doi.org/10.1016/j.snb.2019.127466

    Article  CAS  Google Scholar 

  68. Tong A (2001) Improving the accuracy of temperature measurements. Sens Rev 21:193–198. https://doi.org/10.1108/02602280110398044

    Article  Google Scholar 

  69. Wen S, Wang S, Chung D (1999) Carbon fiber structural composites as thermistors. Sens Actuators A 78:180–188. https://doi.org/10.1016/S0924-4247(99)00240-X

    Article  CAS  Google Scholar 

  70. Teichmann C, Töpfer J (2022) Sintering and electrical properties of Cu-substituted Zn-Co-Ni-Mn spinel ceramics for NTC thermistors thick films. J Eur Ceram Soc 42:2261–2267. https://doi.org/10.1016/j.jeurceramsoc.2021.12.078

    Article  CAS  Google Scholar 

  71. Turkani VS, Maddipatla D, Narakathu BB et al (2018) A carbon nanotube based NTC thermistor using additive print manufacturing processes. Sens Actuators A 279:1–9. https://doi.org/10.1016/j.sna.2018.05.042

    Article  CAS  Google Scholar 

  72. Hussain MM, El-Atab N (2019) Handbook of flexible and stretchable. Electronics. https://doi.org/10.1201/B22262

    Article  Google Scholar 

  73. Sahoo S, Parashar SKS, Ali SM (2014) CaTiO3 nano ceramic for NTCR thermistor based sensor application. J Adv Ceram 3:117–124. https://doi.org/10.1007/s40145-014-0100-6

    Article  CAS  Google Scholar 

  74. Childs PRN, Greenwood JR, Long CA (2000) Review of temperature measurement. Rev Sci Instrum 71:2959–2978. https://doi.org/10.1063/1.1305516

    Article  CAS  Google Scholar 

  75. Arman Kuzubasoglu B, KursunBahadir S (2020) Flexible temperature sensors: a review. Sens Actuators A 315:112282. https://doi.org/10.1016/j.sna.2020.112282

    Article  CAS  Google Scholar 

  76. Kwon B, Bae H, Lee H et al (2022) Ultrasensitive N-channel graphene gas sensors by nondestructive molecular doping. ACS Nano 16:2176–2187. https://doi.org/10.1021/acsnano.1c08186

    Article  CAS  PubMed  Google Scholar 

  77. Meng W, Nie M, Liu Z et al (2021) Buckled fiber conductors with resistance stability under strain. Adv Fiber Mater 3:149–159. https://doi.org/10.1007/s42765-021-00067-x

    Article  Google Scholar 

  78. Chen M, Wang Z, Li K et al (2021) Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater 3:1–13. https://doi.org/10.1007/s42765-020-00057-5

    Article  CAS  Google Scholar 

  79. Wu Z, Li X, Feng Z et al (2023) Stable and dynamic multiparameter monitoring on chests using flexible skin patches with self-adhesive electrodes and a synchronous correlation peak extraction algorithm. Adv Healthc Mater 12:e2202629. https://doi.org/10.1002/adhm.202202629

    Article  CAS  PubMed  Google Scholar 

  80. Gan Y, Zhou M, Ma H et al (2022) Silver nano-reporter enables simple and ultrasensitive profiling of microRNAs on a nanoflower-like microelectrode array on glass. J Nanobiotechnol 20:456–460. https://doi.org/10.1186/s12951-022-01664-7

    Article  CAS  Google Scholar 

  81. Park J, Lee Y, Hong J et al (2014) Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8:12020–12029. https://doi.org/10.1021/nn505953t

    Article  CAS  PubMed  Google Scholar 

  82. Huang Z, Gao M, Yan Z et al (2017) Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity. Sens Actuators A 266:345–351. https://doi.org/10.1016/j.sna.2017.09.054

    Article  CAS  Google Scholar 

  83. Pan L, Chortos A, Yu G et al (2014) An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5:3002. https://doi.org/10.1038/ncomms4002

    Article  CAS  PubMed  Google Scholar 

  84. Shu J, Yang R, Chang Y et al (2021) A flexible metal thin film strain sensor with micro/nano structure for large deformation and high sensitivity strain measurement. J. Alloys Compd 879:160466. https://doi.org/10.1016/j.jallcom.2021.160466

    Article  CAS  Google Scholar 

  85. Wang H, Zhou R, Li D et al (2021) High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15:9690–9700. https://doi.org/10.1021/acsnano.1c00259

    Article  CAS  PubMed  Google Scholar 

  86. Zhang M, Wang C, Wang Q et al (2016) Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces 8:20894–20899. https://doi.org/10.1021/acsami.6b06984

    Article  CAS  PubMed  Google Scholar 

  87. Li X, Hua T, Xu B (2017) Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core. Carbon 118:686–698. https://doi.org/10.1016/j.carbon.2017.04.002

    Article  CAS  Google Scholar 

  88. Souri H, Bhattacharyya D (2018) Wearable strain sensors based on electrically conductive natural fiber yarns. Mater Des 154:217–227. https://doi.org/10.1016/j.matdes.2018.05.040

    Article  CAS  Google Scholar 

  89. Wang D, Sheng B, Peng L et al (2019) Flexible and optical fiber sensors composited by graphene and PDMS for motion detection. Polymers (Basel) 11:1433. https://doi.org/10.3390/polym11091433

    Article  CAS  PubMed  Google Scholar 

  90. Ma Q, Hao B, Ma PC (2020) Modulating the sensitivity of a flexible sensor using conductive glass fibre with a controlled structure profile. Compos Commun 20:100367. https://doi.org/10.1016/j.coco.2020.100367

    Article  Google Scholar 

  91. Lu D, Liao S, Chu Y et al (2022) Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater 5:223–234. https://doi.org/10.1007/s42765-022-00211-1

    Article  CAS  Google Scholar 

  92. Chun S, Choi Y, Park W (2017) All-graphene strain sensor on soft substrate. Carbon 116:753–759. https://doi.org/10.1016/j.carbon.2017.02.058

    Article  CAS  Google Scholar 

  93. Coskun MB, Akbari A, Lai DT et al (2016) Ultrasensitive strain sensor produced by direct patterning of liquid crystals of graphene oxide on a flexible substrate. ACS Appl Mater Interfaces 8:22501–22505. https://doi.org/10.1021/acsami.6b06290

    Article  CAS  PubMed  Google Scholar 

  94. Liu Y, Zhang D, Wang K et al (2016) A novel strain sensor based on graphene composite films with layered structure. Compos A 80:95–103. https://doi.org/10.1016/j.compositesa.2015.10.010

    Article  CAS  Google Scholar 

  95. Chun S, Son W, Park W (2019) A stretchable graphene thin-film sensor for detecting all of lateral and vertical strains. J Nanosci Nanotechnol 19:1585–1591. https://doi.org/10.1166/jnn.2019.16261

    Article  CAS  PubMed  Google Scholar 

  96. Jia H, Yang X, Kong QQ et al (2021) Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J Mater Chem A 9:1180–1191. https://doi.org/10.1039/d0ta09246k

    Article  CAS  Google Scholar 

  97. Li X, Yang T, Yang Y et al (2016) Large-area ultrathin graphene films by single-step Marangoni self-assembly for highly sensitive strain sensing application. Adv Funct Mater 26:1322–1329. https://doi.org/10.1002/adfm.201504717

    Article  CAS  Google Scholar 

  98. Jiang Y, He Q, Cai J et al (2020) Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films. ACS Appl Mater Interfaces 12:58317–58325. https://doi.org/10.1021/acsami.0c19484

    Article  CAS  PubMed  Google Scholar 

  99. Qin Y, Peng Q, Ding Y et al (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9:8933–8941. https://doi.org/10.1021/acsnano.5b02781

    Article  CAS  PubMed  Google Scholar 

  100. Zhang L, Li H, Lai X et al (2020) Three-dimensional binary-conductive-network silver nanowires@thiolated graphene foam-based room-temperature self-healable strain sensor for human motion detection. ACS Appl Mater Interfaces 12:44360–44370. https://doi.org/10.1021/acsami.0c13442

    Article  CAS  PubMed  Google Scholar 

  101. Huang L, Wang H, Wu P et al (2020) Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors (Basel) 20:4266. https://doi.org/10.3390/s20154266

    Article  CAS  PubMed  Google Scholar 

  102. Zheng R, Wang Y, Zhang Z et al (2021) High sensitivity and broad detection range flexible capacitive pressure sensor based on rGO cotton fiber for human motion detection. Smart Mater Struct 31:025019. https://doi.org/10.1088/1361-665X/ac3c07

    Article  Google Scholar 

  103. Jiang X, Ren Z, Fu Y et al (2019) Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains. ACS Appl Mater Interfaces 11:37051–37059. https://doi.org/10.1021/acsami.9b11596

    Article  CAS  PubMed  Google Scholar 

  104. Tao LQ, Zhang KN, Tian H et al (2017) Graphene-paper pressure sensor for detecting human motions. ACS Nano 11:8790–8795. https://doi.org/10.1021/acsnano.7b02826

    Article  CAS  PubMed  Google Scholar 

  105. Lou C, Wang S, Liang T et al (2017) A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis. Materials (Basel) 10:1068. https://doi.org/10.3390/ma10091068

    Article  CAS  PubMed  Google Scholar 

  106. Cheng L, Wang R, Hao X et al (2021) Design of flexible pressure sensor based on conical microstructure PDMS-bilayer graphene. Sensors (Basel) 21:289. https://doi.org/10.3390/s21010289

    Article  CAS  PubMed  Google Scholar 

  107. Chen Z, Ming T, Goulamaly MM et al (2016) Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays. Adv Funct Mater 26:5061–5067. https://doi.org/10.1002/adfm.201503674

    Article  CAS  Google Scholar 

  108. Luo S, Yang J, Song X et al (2018) Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron 145:29–33. https://doi.org/10.1016/j.sse.2018.04.003

    Article  CAS  Google Scholar 

  109. Kou H, Zhang L, Tan Q et al (2018) Wireless flexible pressure sensor based on micro-patterned Graphene/PDMS composite. Sens Actuators, A 277:150–156. https://doi.org/10.1016/j.sna.2018.05.015

    Article  CAS  Google Scholar 

  110. Tang X, Yang W, Yin S et al (2021) Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl Mater Interfaces 13:20448–20458. https://doi.org/10.1021/acsami.0c22784

    Article  CAS  PubMed  Google Scholar 

  111. Li Q, Liu Y, Chen D et al (2021) Highly sensitive and flexible piezoresistive pressure sensors based on 3D reduced graphene oxide aerogel. IEEE Electron Device Lett 42:589–592. https://doi.org/10.1109/led.2021.3063166

    Article  CAS  Google Scholar 

  112. Yang J, Li X, Lu X et al (2018) Three-dimensional interfacial stress sensor based on graphene foam. IEEE Sens J 18:7956–7963. https://doi.org/10.1109/jsen.2018.2855691

    Article  CAS  Google Scholar 

  113. Kaidarova A, Alsharif N, Oliveira BNM et al (2020) Laser-printed flexible graphene pressure sensors. Glob Chall 4:2000001. https://doi.org/10.1002/gch2.202000001

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yang J, Luo S, Zhou X et al (2019) Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces 11:14997–15006. https://doi.org/10.1021/acsami.9b02049

    Article  CAS  PubMed  Google Scholar 

  115. Xia K, Wang C, Jian M et al (2017) CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res 11:1124–1134. https://doi.org/10.1007/s12274-017-1731-z

    Article  CAS  Google Scholar 

  116. Stanford MG, Yang K, Chyan Y et al (2019) Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13:3474–3482. https://doi.org/10.1021/acsnano.8b09622

    Article  CAS  PubMed  Google Scholar 

  117. Chen ZC, Chang TL, Chen CH et al (2021) Flexible NO gas sensor fabricated using graphene/silver nanoparticles stacked electrode structures. Mater Lett 295:129826. https://doi.org/10.1016/j.matlet.2021.129826

    Article  CAS  Google Scholar 

  118. Park HJ, Kim WJ, Lee HK et al (2018) Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics. Sens Actuators B 257:846–852. https://doi.org/10.1016/j.snb.2017.11.032

    Article  CAS  Google Scholar 

  119. Park H, Kim W, Lee SW et al (2022) Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite. J Mater Sci Technol 101:165–172. https://doi.org/10.1016/j.jmst.2021.06.018

    Article  CAS  Google Scholar 

  120. Lin Q, Zhang F, Zhao N et al (2022) A flexible and wearable nylon fiber sensor modified by reduced graphene oxide and ZnO quantum dots for wide-range NO2 gas detection at room temperature. Materials (Basel) 15:3772. https://doi.org/10.3390/ma15113772

    Article  CAS  PubMed  Google Scholar 

  121. Chen Q, Liu D, Lin L et al (2019) Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sens Actuators B 286:591–599. https://doi.org/10.1016/j.snb.2019.02.024

    Article  CAS  Google Scholar 

  122. Hong HS, Ha NH, Thinh DD et al (2021) Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network. Nano Energy 87:106165. https://doi.org/10.1016/j.nanoen.2021.106165

    Article  CAS  Google Scholar 

  123. Mahmoud WE, Al-Bluwi SA (2020) Development of highly sensitive temperature sensor made of graphene monolayers doped P(VDF-TrFE) nanocomposites. Sens Actuators A 312:112101. https://doi.org/10.1016/j.sna.2020.112101

    Article  CAS  Google Scholar 

  124. Yang J, Wei D, Tang L et al (2015) Wearable temperature sensor based on graphene nanowalls. RSC Adv 5:25609–25615. https://doi.org/10.1039/c5ra00871a

    Article  CAS  Google Scholar 

  125. Hilal M, Han JI (2020) Development of a highly flexible and durable fiber-shaped temperature sensor based on graphene/Ni double-decked layer for wearable devices. IEEE Sens J 20:5146–5154. https://doi.org/10.1109/jsen.2020.2967347

    Article  CAS  Google Scholar 

  126. Liu G, Tan Q, Kou H et al (2018) A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors (Basel) 18:1400. https://doi.org/10.3390/s18051400

    Article  CAS  PubMed  Google Scholar 

  127. Wang F, Jiang J, Sun F et al (2019) Flexible wearable graphene/alginate composite non-woven fabric temperature sensor with high sensitivity and anti-interference. Cellulose 27:2369–2380. https://doi.org/10.1007/s10570-019-02951-7

    Article  CAS  Google Scholar 

  128. Rajan G, Morgan JJ, Murphy C et al (2020) Low operating voltage carbon-graphene hybrid E-textile for temperature sensing. ACS Appl Mater Interfaces 12:29861–29867. https://doi.org/10.1021/acsami.0c08397

    Article  CAS  PubMed  Google Scholar 

  129. Neella N, Gaddam V, Nayak MM et al (2017) Scalable fabrication of highly sensitive flexible temperature sensors based on silver nanoparticles coated reduced graphene oxide nanocomposite thin films. Sens Actuators A 268:173–182. https://doi.org/10.1016/j.sna.2017.11.011

    Article  CAS  Google Scholar 

  130. Zeng Y, Li T, Yao Y et al (2019) Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv Funct Mater 29:1901388. https://doi.org/10.1002/adfm.201901388

    Article  CAS  Google Scholar 

  131. Wu J, Huang W, Liang Y et al (2021) Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv Electron Mater 7:2001084. https://doi.org/10.1002/aelm.202001084

    Article  CAS  Google Scholar 

  132. Sadasivuni KK, Kafy A, Kim HC et al (2015) Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synth Met 206:154–161. https://doi.org/10.1016/j.synthmet.2015.05.018

    Article  CAS  Google Scholar 

  133. Liu Q, Tai H, Yuan Z et al (2019) A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring. Adv Mater Technol 4:1800594. https://doi.org/10.1002/admt.201800594

    Article  CAS  Google Scholar 

  134. Zeng X, Deng HT, Wen DL et al (2022) Wearable multi-functional sensing technology for healthcare smart detection. Micromachines (Basel) 13:254. https://doi.org/10.3390/mi13020254

    Article  PubMed  Google Scholar 

  135. Dai Y, Gao S (2021) A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots. IEEE Sens J 21:26355–26363. https://doi.org/10.1109/jsen.2021.3055035

    Article  CAS  Google Scholar 

  136. Zhao K, Ouyang B, Bowen CR et al (2020) One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 71:104632. https://doi.org/10.1016/j.nanoen.2020.104632

    Article  CAS  Google Scholar 

  137. Song M, Seo J, Kim H et al (2017) Ultrasensitive multi-functional flexible sensors based on organic field-effect transistors with polymer-dispersed liquid crystal sensing layers. Sci Rep 7:2630. https://doi.org/10.1038/s41598-017-02160-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cai T, Yan YZ, Jung J et al (2021) Phosphorescence-based temperature and tactile multi-functional flexible sensing skin. Sens Actuators A 332:113205. https://doi.org/10.1016/j.sna.2021.113205

    Article  CAS  Google Scholar 

  139. Hou W, Luan Z, Xie D et al (2021) High performance dual strain-temperature sensor based on alginate nanofibril/graphene oxide/polyacrylamide nanocomposite hydrogel. Compos Commun 27:100837. https://doi.org/10.1016/j.coco.2021.100837

    Article  Google Scholar 

  140. Saeidi-Javash M, Du Y, Zeng M et al (2021) All-printed MXene–graphene nanosheet-based bimodal sensors for simultaneous strain and temperature sensing. ACS Appl Electron Mater 3:2341–2348. https://doi.org/10.1021/acsaelm.1c00218

    Article  CAS  Google Scholar 

  141. Zhang F, Hu H, Islam M et al (2020) Multi-modal strain and temperature sensor by hybridizing reduced graphene oxide and PEDOT:PSS. Compos Sci Technol 187:107959. https://doi.org/10.1016/j.compscitech.2019.107959

    Article  CAS  Google Scholar 

  142. Kanao K, Harada S, Yamamoto Y et al (2015) Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Adv 5:30170–30174. https://doi.org/10.1039/c5ra03110a

    Article  Google Scholar 

  143. Harada S, Honda W, Arie T et al (2014) Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 8:3921–3927. https://doi.org/10.1021/nn500845a

    Article  CAS  PubMed  Google Scholar 

  144. Xiao W, Wang L, Li B et al (2022) Interface-engineered reduced graphene oxide assembly on nanofiber surface for high performance strain and temperature sensing. J Colloid Interface Sci 608:931–941. https://doi.org/10.1016/j.jcis.2021.10.032

    Article  CAS  PubMed  Google Scholar 

  145. Kumaresan Y, Ozioko O, Dahiya R (2020) Effect of dielectric and stiffness of soft material between the electrodes of a capacitive pressure sensor on its performance. IEEE 1–4. https://doi.org/10.1109/FLEPS49123.2020.9239583

  146. Ozioko O, Kumaresan Y, Dahiya R (2020) Carbon nanotube/PEDOT: PSS composite-based flexible temperature sensor with enhanced response and recovery time. IEEE 1–4. https://doi.org/10.1109/FLEPS49123.2020.9239431

  147. Kumaresan Y, Ozioko O, Dahiya R (2021) Multifunctional electronic skin with a stack of temperature and pressure sensor arrays. IEEE Sens J 21:26243–26251. https://doi.org/10.1109/jsen.2021.3055458

    Article  CAS  Google Scholar 

  148. Yin F, Guo Y, Li H et al (2022) A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res 15:9341–9351. https://doi.org/10.1007/s12274-022-4440-1

    Article  CAS  Google Scholar 

  149. Pan J, Liu S, Zhang H et al (2019) A flexible temperature sensor array with polyaniline/graphene-polyvinyl butyral thin film. Sensors (Basel) 19:4105. https://doi.org/10.3390/s19194105

    Article  CAS  PubMed  Google Scholar 

  150. Sahatiya P, Puttapati SK, Srikanth VVSS et al (2016) Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flexi Print Electron 1:025006. https://doi.org/10.1088/2058-8585/1/2/025006

    Article  CAS  Google Scholar 

  151. Dinh T, Phan HP, Nguyen TK et al (2016) Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J Mater Chem C 4:10061–10068. https://doi.org/10.1039/c6tc02708c

    Article  CAS  Google Scholar 

  152. Zhao X, Long Y, Yang T et al (2017) Simultaneous high sensitivity sensing of temperature and humidity with graphene woven fabrics. ACS Appl Mater Interfaces 9:30171–30176. https://doi.org/10.1021/acsami.7b09184

    Article  CAS  PubMed  Google Scholar 

  153. Wang X, Yue O, Liu X et al (2020) A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure. Chem Eng J 392:123672. https://doi.org/10.1016/j.cej.2019.123672

    Article  CAS  Google Scholar 

  154. Niu D, Jiang W, Ye G et al (2018) Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Mater Res Bull 102:92–99. https://doi.org/10.1016/j.materresbull.2018.02.005

    Article  CAS  Google Scholar 

  155. Sahatiya P, Badhulika S (2017) Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors. Nanotechnology 28:095501. https://doi.org/10.1088/1361-6528/aa5845

    Article  CAS  PubMed  Google Scholar 

  156. Lu Y, Qu X, Zhao W et al (2020) Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research (Wash D C) 2020:2038560. https://doi.org/10.34133/2020/2038560

    Article  CAS  PubMed  Google Scholar 

  157. Luo Z, Hu X, Tian X et al (2019) Structure-property relationships in graphene-based strain and pressure sensors for potential artificial intelligence applications. Sensors (Basel) 19:1250. https://doi.org/10.3390/s19051250

    Article  CAS  PubMed  Google Scholar 

  158. He Y, Zhou M, Mahmoud MHH et al (2022) Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv Compos Hybrid Mater 5:1939–1950. https://doi.org/10.1007/s42114-022-00525-z

    Article  CAS  Google Scholar 

  159. Zeng Z, Wu N, Yang W et al (2022) Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18:e2202047. https://doi.org/10.1002/smll.202202047

    Article  CAS  PubMed  Google Scholar 

  160. Li K, Yang W, Yi M et al (2021) Graphene-based pressure sensor and strain sensor for detecting human activities. Smart Mater Struct 30. https://doi.org/10.1088/1361-665X/ac0d8b

  161. He X, Liu Q, Wang J et al (2019) Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics. Front Mater Sci Chin 13:305–313. https://doi.org/10.1007/s11706-019-0472-1

    Article  Google Scholar 

  162. Zhang Q, An C, Fan S et al (2018) Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection. Nanotechnology 29:285501. https://doi.org/10.1088/1361-6528/aabf2f

    Article  CAS  PubMed  Google Scholar 

  163. Kinkeldei T, Zysset C, Münzenrieder N et al (2013) The influence of bending on the performance of flexible carbon black/polymer composite gas sensors. J Polym Sci B Polym Phys 51:329–336. https://doi.org/10.1002/polb.23219

    Article  CAS  Google Scholar 

  164. Liu H, Xiang H, Wang Y et al (2019) A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl Mater Interfaces 11:40613–40619. https://doi.org/10.1021/acsami.9b13349

    Article  CAS  PubMed  Google Scholar 

  165. Bi S, Hou L, Lu Y (2021) An integrated wearable strain, temperature and humidity sensor for multifunctional monitoring. Compos Part A 149:106504. https://doi.org/10.1016/j.compositesa.2021.106504

    Article  CAS  Google Scholar 

  166. Li C, Yang S, Guo Y et al (2021) Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing. Chem Eng J 426. https://doi.org/10.1016/j.cej.2021.130364

  167. Zu G, Kanamori K, Nakanishi K et al (2019) Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array. Chem Mater 31:6276–6285. https://doi.org/10.1021/acs.chemmater.9b02437

    Article  CAS  Google Scholar 

  168. Lu L, Yang B, Liu J (2020) Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem Eng J 400:125928. https://doi.org/10.1016/j.cej.2020.125928

    Article  CAS  Google Scholar 

  169. Lee Y, Kim J, Jang B et al (2019) Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62:259–267. https://doi.org/10.1016/j.nanoen.2019.05.039

    Article  CAS  Google Scholar 

  170. Ejehi F, Mohammadpour R, Asadian E et al (2020) Graphene oxide papers in nanogenerators for self-powered humidity sensing by finger tapping. Sci Rep 10:7312. https://doi.org/10.1038/s41598-020-64490-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mokhtari F, Spinks GM, Sayyar S et al (2020) Highly stretchable self-powered wearable electrical energy generator and sensors. Adv Mater Technol 6:2000841. https://doi.org/10.1002/admt.202000841

    Article  CAS  Google Scholar 

  172. Park KI, Son JH, Hwang GT et al (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520. https://doi.org/10.1002/adma.201305659

    Article  CAS  PubMed  Google Scholar 

  173. Nguyen Q, Kim BH, Kwon JW (2015) Paper-based ZnO nanogenerator using contact electrification and piezoelectric effects. J Microelectromech Syst 24:519–521. https://doi.org/10.1109/jmems.2015.2416719

    Article  CAS  Google Scholar 

  174. Chen Y, Zhang Z, Wang Z et al (2022) Friction-dominated carrier excitation and transport mechanism for GaN-based direct-current triboelectric nanogenerators. ACS Appl Mater Interfaces 24020–24027. https://doi.org/10.1021/acsami.2c03853

  175. Zhang Z, Jiang D, Zhao J et al (2020) Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv Energy Mater 10:1903713. https://doi.org/10.1002/aenm.201903713

    Article  CAS  Google Scholar 

  176. Sun L, Huang H, Ding Q et al (2021) Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv Fiber Mater 4:98–107. https://doi.org/10.1007/s42765-021-00086-8

    Article  CAS  Google Scholar 

  177. Rafique S, Kasi AK, Kasi JK et al (2020) Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomater Nanotechnol 10:184798041989574. https://doi.org/10.1177/1847980419895741

    Article  CAS  Google Scholar 

  178. Yang Y, Guo W, Pradel KC et al (2012) Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 12:2833–2838. https://doi.org/10.1021/nl3003039

    Article  CAS  PubMed  Google Scholar 

  179. Liu Y, Hu Y, Zhao J et al (2016) Self-powered piezoionic strain sensor toward the monitoring of human activities. Small 12:5074–5080. https://doi.org/10.1002/smll.201600553

    Article  CAS  PubMed  Google Scholar 

  180. Roy K, Ghosh SK, Sultana A et al (2019) A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl Nano Mater 2:2013–2025. https://doi.org/10.1021/acsanm.9b00033

    Article  CAS  Google Scholar 

  181. Wang ZL (2020) On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68:104272. https://doi.org/10.1016/j.nanoen.2019.104272

    Article  CAS  Google Scholar 

  182. Zhao J, Bu T, Zhang X et al (2020) Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research (Wash D C). 2020:1398903. https://doi.org/10.34133/2020/1398903

  183. Zeng Y, Cheng Y, Zhu J et al (2022) Self-powered sensors driven by Maxwell’s displacement current wirelessly provided by TENG. Appl Mater Today 27:101375. https://doi.org/10.1016/j.apmt.2022.101375

    Article  Google Scholar 

  184. Tang S, Zhang X, Fan J et al (2022) Fibrillation of well-formed conductive aerogel for soft conductors. Appl Mater Today 26:101399. https://doi.org/10.1016/j.apmt.2022.101399

    Article  Google Scholar 

  185. Jurado UT, Pu SH (2017) White NM (2017) A contact-separation mode triboelectric nanogenerator for ocean wave impact energy harvesting. IEEE Sensors 1:1–3. https://doi.org/10.1109/ICSENS.2017.8234198

    Article  Google Scholar 

  186. Liu S, Li X, Wang Y et al (2021) Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy. 83:105851. https://doi.org/10.1016/j.nanoen.2021.105851

    Article  CAS  Google Scholar 

  187. Wu X, Li G, Lee DW (2016) A novel energy conversion method based on hydrogel material for self-powered sensor system applications. Appl Energy 173:103–110. https://doi.org/10.1016/j.apenergy.2016.04.028

    Article  CAS  Google Scholar 

  188. Yar A (2021) High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting. Energy 222:119949. https://doi.org/10.1016/j.energy.2021.119949

    Article  CAS  Google Scholar 

  189. Maharjan P, Bhatta T, Salauddin M et al (2020) A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 76:105071. https://doi.org/10.1016/j.nanoen.2020.105071

    Article  CAS  Google Scholar 

  190. Yang J, Liu P, Wei X et al (2017) Surface engineering of graphene composite transparent electrodes for high-performance flexible triboelectric nanogenerators and self-powered sensors. ACS Appl Mater Interfaces 9:36017–36025. https://doi.org/10.1021/acsami.7b10373

    Article  CAS  PubMed  Google Scholar 

  191. Liu J, Zhang L, Wang N et al (2020) Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy 78:105385. https://doi.org/10.1016/j.nanoen.2020.105385

    Article  CAS  Google Scholar 

  192. Fu K, Zhou J, Wu H et al (2021) Fibrous self-powered sensor with high stretchability for physiological information monitoring. Nano Energy 88:106258. https://doi.org/10.1016/j.nanoen.2021.106258

    Article  CAS  Google Scholar 

  193. Ejehi F, Mohammadpour R, Asadian E et al (2021) Enhancement of self-powered humidity sensing of graphene oxide-based triboelectric nanogenerators by addition of graphene oxide nanoribbons. Mikrochim Acta 188:251. https://doi.org/10.1007/s00604-021-04921-y

    Article  CAS  PubMed  Google Scholar 

  194. Xiaoqiang L, Qian S, Yan K et al (2020) Self-powered humidity sensor based on polypyrrole modified melamine aerogel. Mater Lett 277:128281. https://doi.org/10.1016/j.matlet.2020.128281

    Article  CAS  Google Scholar 

  195. Xue G, Xu Y, Ding T et al (2017) Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotechnol 12:317–321. https://doi.org/10.1038/nnano.2016.300

    Article  CAS  PubMed  Google Scholar 

  196. Lin L, Hu Y, Xu C et al (2013) Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2:75–81. https://doi.org/10.1016/j.nanoen.2012.07.019

    Article  CAS  Google Scholar 

  197. Zhou Q, Park JG, Kim KN et al (2018) Transparent-flexible-multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications. Nano Energy 48:471–480. https://doi.org/10.1016/j.nanoen.2018.03.074

    Article  CAS  Google Scholar 

  198. Wang C, Xia K, Wang H et al (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31:e1801072. https://doi.org/10.1002/adma.201801072

    Article  CAS  PubMed  Google Scholar 

  199. Taroni PJ, Santagiuliana G, Wan K et al (2018) Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv Funct Mater 28:1704285. https://doi.org/10.1002/adfm.201704285

    Article  CAS  Google Scholar 

  200. Zhang D, Zhang K, Wang Y et al (2019) Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy 56:25–32. https://doi.org/10.1016/j.nanoen.2018.11.026

    Article  CAS  Google Scholar 

  201. Xie Y, Chou TM, Yang W et al (2017) Flexible thermoelectric nanogenerator based on the MoS2/graphene nanocomposite and its application for a self-powered temperature sensor. Semicond Sci Technol 32:044003. https://doi.org/10.1088/1361-6641/aa62f2

    Article  CAS  Google Scholar 

  202. Zhang F, Zang Y, Huang D et al (2015) Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 6:8356. https://doi.org/10.1038/ncomms9356

    Article  CAS  PubMed  Google Scholar 

  203. Xu S, Fan Z, Yang S et al (2021) Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem Eng J 404:126064. https://doi.org/10.1016/j.cej.2020.126064

    Article  CAS  Google Scholar 

  204. Lee MJ, Ahn JH, Sung JH et al (2016) Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat Commun 7:12011. https://doi.org/10.1038/ncomms12011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387. https://doi.org/10.1186/s11671-017-2150-5

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zhang R, Zhang W, Shi M et al (2022) Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigm 199:109968. https://doi.org/10.1016/j.dyepig.2021.109968

    Article  CAS  Google Scholar 

  207. Chen X, Qiu L, Ren J et al (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441. https://doi.org/10.1002/adma.201301519

    Article  CAS  PubMed  Google Scholar 

  208. Feng P, Song G, Li X et al (2021) Effects of different “rigid-flexible” structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites. J Colloid Interface Sci 583:13–23. https://doi.org/10.1016/j.jcis.2020.09.005

    Article  CAS  PubMed  Google Scholar 

  209. Jung HY, Karimi MB, Hahm MG et al (2012) Transparent, flexible supercapacitors from nano-engineered carbon films. Sci Rep 2:773. https://doi.org/10.1038/srep00773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen H, Zeng S, Chen M et al (2015) Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–296. https://doi.org/10.1016/j.carbon.2015.04.010

    Article  CAS  Google Scholar 

  211. Yuksel R, Sarioba Z, Cirpan A et al (2014) Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl Mater Interfaces 6:15434–15439. https://doi.org/10.1021/am504021u

    Article  CAS  PubMed  Google Scholar 

  212. Chen LF, Huang ZH, Liang HW et al (2013) Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ Sci 6:3331–3338. https://doi.org/10.1039/c3ee42366b

    Article  CAS  Google Scholar 

  213. Li X, Tang Y, Song J et al (2018) Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244. https://doi.org/10.1016/j.carbon.2017.11.099

    Article  CAS  Google Scholar 

  214. Ma L, Bi Z, Zhang W et al (2020) Synthesis of a three-dimensional interconnected oxygen-, boron-, nitrogen-, and phosphorus tetratomic-doped porous carbon network as electrode material for the construction of a superior flexible supercapacitor. ACS Appl Mater Interfaces 12:46170–46180. https://doi.org/10.1021/acsami.0c13454

    Article  CAS  PubMed  Google Scholar 

  215. Ghanashyam G, Jeong HK (2021) Plasma treated carbon nanofiber for flexible supercapacitors. J Energy Storage 40:102806. https://doi.org/10.1016/j.est.2021.102806

    Article  Google Scholar 

  216. Wang Y, Guo X, Shi Y et al (2019) Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator. J Micromech Microeng 29:045002. https://doi.org/10.1088/1361-6439/ab0239

    Article  CAS  Google Scholar 

  217. Wang Q, Liu J, Ran X et al (2021) High-performance flexible self-powered strain sensor based on carbon nanotube/ZnSe/CoSe2 nanocomposite film electrodes. Nano Res 15:170–178. https://doi.org/10.1007/s12274-021-3453-5

    Article  CAS  Google Scholar 

  218. Yu L, Yi Y, Yao T et al (2018) All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res 12:331–338. https://doi.org/10.1007/s12274-018-2219-1

    Article  CAS  Google Scholar 

  219. Shi X, Chang J, Qin J et al (2021) Scalable fabrication of in-plane microscale self-powered integrated systems for fast-response and highly selective dual-channel gas detection. Nano Energy 88:106253. https://doi.org/10.1016/j.nanoen.2021.106253

    Article  CAS  Google Scholar 

  220. Peng P, Lan Y, Luo J (2019) Modified silica incorporating into PDMS polymeric membranes for bioethanol selection. Adv Polym Tech 2019:1–8. https://doi.org/10.1155/2019/5610282

    Article  CAS  Google Scholar 

  221. Ma X, Shi C, Huang X et al (2019) Effect of natural melanin nanoparticles on a self-healing cross-linked polyurethane. Polym J 51:547–558. https://doi.org/10.1038/s41428-018-0153-4

    Article  CAS  Google Scholar 

  222. Grogan K, Pflugmacher D, Hostert P et al (2019) Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat Plants 5:47–53. https://doi.org/10.1038/s41477-018-0325-4

    Article  PubMed  Google Scholar 

  223. Sun Z, Wang L, Jiang X et al (2020) Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 155:1569–1577. https://doi.org/10.1016/j.ijbiomac.2019.11.134

    Article  CAS  PubMed  Google Scholar 

  224. Zhang Y, Ren E, Li A et al (2021) A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. J Mater Chem B 9:719–730. https://doi.org/10.1039/d0tb01926g

    Article  CAS  PubMed  Google Scholar 

  225. Ma Z, Li H, Jing X et al (2021) Recent advancements in self-healing composite elastomers for flexible strain sensors: Materials, healing systems, and features. Sens Actuators A 329. https://doi.org/10.1016/j.sna.2021.112800

  226. Qin T, Liao W, Yu L et al (2022) Recent progress in conductive self-healing hydrogels for flexible sensors. J Polym Sci 60:2607–2634. https://doi.org/10.1002/pol.20210899

    Article  CAS  Google Scholar 

  227. Zhang J, Wang Y, Wei Q et al (2021) Self-healing mechanism and conductivity of the hydrogel flexible sensors: a review. Gels 7:216. https://doi.org/10.3390/gels7040216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Shin KY, Hong JY, Jang J (2011) Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv Mater 23:2113–2118. https://doi.org/10.1002/adma.201100345

    Article  CAS  PubMed  Google Scholar 

  229. Le NN, Blanc EF, Phan HCT et al (2018) A RFID-based wireless NH3 gas detector using spin coated carbon nanotubes as sensitive layer. Int J Nanotechnol 15:3–13. https://doi.org/10.1504/ijnt.2018.089556

    Article  CAS  Google Scholar 

  230. Ozek EA, Tanyeli S, Yapici MK (2021) Flexible graphene textile temperature sensing RFID coils based on spray printing. IEEE Sens J 21:26382–26388. https://doi.org/10.1109/jsen.2021.3075902

    Article  CAS  Google Scholar 

  231. Tang D, Wang Q, Wang Z et al (2018) Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. Chin Sci Bull 63:574–579. https://doi.org/10.1016/j.scib.2018.03.014

    Article  CAS  Google Scholar 

  232. Sindhu B, Kothuru A, Sahatiya P et al (2021) Laser-induced graphene printed wearable flexible antenna-based strain sensor for wireless human motion monitoring. IEEE Trans Electron Devices 68:3189–3194. https://doi.org/10.1109/ted.2021.3067304

    Article  CAS  Google Scholar 

  233. Zhu G, Ren P, Yang J et al (2022) Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy 98:107327. https://doi.org/10.1016/j.nanoen.2022.107327

    Article  CAS  Google Scholar 

  234. Ahmed A, Zhang SL, Hassan I et al (2017) A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays. Extreme Mech Lett 13:25–35. https://doi.org/10.1016/j.eml.2017.01.006

    Article  Google Scholar 

  235. Zhang Y, Wang Z, Yu P et al (2022) Ultrasensitive and wide-range reduced graphene oxide/natural rubber foam sensors for multifunctional self-powered wireless wearable applications. Compos Sci Technol 226:109560. https://doi.org/10.1016/j.compscitech.2022.109560

Download references

Funding

This study was financially supported by the Science and Technology Plan Source Innovation Project of the West Coast of Qingdao New District (Flexible wearable data acquisition system of thermoelectric conversion for human body temperature domain and preparation process of electric traction, 2020–98).

Author information

Authors and Affiliations

Authors

Contributions

Ming Kong: investigation, writing (original draft), and writing (review and editing);

Min Yang: writing (review and editing);

Runze Li: formal analysis, validation;

Yun-Ze Long: formal analysis, validation, and writing (review and editing);

Jun Zhang: formal analysis, validation;

Xian Huang: formal analysis, validation;

Xin Cui: modify paper, formal analysis;

Yanbin Zhang: formal analysis, validation;

Zafar Said: statistical analysis, validation;

Changhe Li: technical and material support; instructional support, and writing (review).

Corresponding authors

Correspondence to Min Yang or Changhe Li.

Ethics declarations

Ethics approval

We declare that the papers we submitted are my research work under the guidance of the instructor and research results we have obtained. We confirm that this article has not been published previously and is not being submitted for publication elsewhere. We have not considered elsewhere except The International Journal of Advanced Manufacturing Technology. We confirm that this article has had the full consent of all authors. If this article was accepted, we confirm that it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the publisher.

Consent to participate

Consent to participate is not applicable to this article.

Consent for publication

The authors declare that they participated in this paper willingly and the authors declare to consent to the publication of this paper.

Conflicts of interest/Competing interests

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, M., Yang, M., Li, R. et al. Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions. Int J Adv Manuf Technol 131, 3205–3237 (2024). https://doi.org/10.1007/s00170-023-12007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12007-7

Keywords

Navigation