Skip to main content

Advertisement

Log in

Development of 3D-Printed PCL/ Baghdadite Nanocomposite Scaffolds for Bone Tissue Engineering Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A significant obstacle in bone tissue engineering is the creation of biodegradable bone replacements with the requisite mechanical and biological capabilities to treat more severe and intricately shaped injuries. Baghdadite has recently indicated that active biological ions such as silicon (Si4+) and zirconium (Zr4+) have been proven to increase bone growth considerably. In this study, we produced 3D-printed PCL-based scaffolds containing different amounts of Baghdadite using the robocasting solvent technique. Notably, PCL with 40 and 60 wt.% Baghdadite scaffolds (PB40 and PB60) promoted a more biomimetic environment for in vitro bone growth as their proper bioactivity and cell viability results were obtained without the addition of osteoinductive components. The printing process produced 3D scaffolds with a compressive strength of 7.94 MPa and elastic modulus of 29.95 MPa in PB40. According to the analytical prediction models in PB40, the elastic modulus was 24.7 and 26.89 MPa. Also, adding 60 wt.% Baghdadite increased the degradation rate to 5.1% in two months, more than six times that of PCL-based scaffolds. Cell proliferation assay demonstrated that the optical density of MG63 cells after 7 days of culture increased from 1.43 ± 0.03 to 1.82 ± 0.20 in PB40 as compared to pure PCL scaffold. Furthermore, bioactivity evaluation, ion release assessment, and morphological observation results further revealed that incorporating Baghdadite into a 3D-printed PCL-based scaffold could improve bone regeneration. Our findings demonstrate that the PCL/Baghdadite composite scaffold may be efficiently manufactured using 3D-printing technology and is extremely promising for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, Min W, Chen J, Duan J-A, Liu P (2022) Bone tissue engineering in the treatment of bone defects. Pharmaceuticals 15(7):879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahtabi R, Benisi SZ, Goodarzi V, Shojaei S (2023) Application of biodegradable bone scaffolds based on poly (lactic acid)/poly (glycerol succinic acid) containing nano-hydroxyapatite. J Polym Environ. https://doi.org/10.1007/s10924-023-02983-y

    Article  Google Scholar 

  3. Kim J-W, Yang B-E, Hong S-J, Choi H-G, Byeon S-J, Lim H-K, Chung S-M, Lee J-H, Byun S-H (2020) Bone regeneration capability of 3D printed ceramic scaffolds. Int J Mol Sci 21(14):4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moghadam ET, Yazdanian M, Alam M, Tebyanian H, Tafazoli A, Tahmasebi E, Ranjbar R, Yazdanian A, Seifalian A (2021) Current natural bioactive materials in bone and tooth regeneration in dentistry: a comprehensive overview. J Mater Res Technol 13:2078–2114

    Article  Google Scholar 

  5. Ahmadipour M, Mohammadi H, Pang AL, Arjmand M, Ayode Otitoju T, Okoye PU, Rajitha B (2022) A review: silicate ceramic-polymer composite scaffold for bone tissue engineering. Int J Polym Mater Polym Biomater 71(3):180–195

    Article  CAS  Google Scholar 

  6. Nadgorny M, Ameli A (2018) Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl Mater Interfaces 10(21):17489–17507

    Article  CAS  PubMed  Google Scholar 

  7. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(1):216–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nazari S, Naeimi M, Rafienia M, Monajjemi M (2023) Fabrication and characterization of 3D nanostructured polycaprolactone-gelatin/nanohydroxyapatite-nanoclay scaffolds for bone tissue regeneration. J Polym Environ. https://doi.org/10.1007/s10924-023-02966-z

    Article  Google Scholar 

  9. Lv Y, Wang B, Liu G, Tang Y, Liu J, Wei G, Wang L (2022) Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces. J Market Res 21:3650–3665

    CAS  Google Scholar 

  10. Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang X-Q (2018) Bioactive hydrogels for bone regeneration. Bioact Mater 3(4):401–417

    PubMed  PubMed Central  Google Scholar 

  11. Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM (2020) Trends in 3D printing processes for biomedical field: opportunities and challenges. J Polym Environ 28:1345–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alizadeh-Osgouei M, Li Y, Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4:22–36

    PubMed  Google Scholar 

  13. Díaz E, Sandonis I (2014) Valle, in vitro degradation of poly (caprolactone)/nHA composites. J Nanomater 2014:1–8

    Article  Google Scholar 

  14. Ielo I, Calabrese G, De Luca G, Conoci S (2022) Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int J Mol Sci 23(17):9721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumawat VS, Saini RK, Agrawal AK, Khare D, Dubey AK, Ghosh SB, Bandyopadhyay-Ghosh S (2023) Nano-fluorcanasite-fluorapatite reinforced poly-ε-caprolactone based biomimetic scaffold: a synergistic approach towards generation of conducive environment for cell survival. J Polym Environ. https://doi.org/10.1007/s10924-023-02977-w

    Article  Google Scholar 

  16. Kantaros A (2022) 3D printing in regenerative medicine: technologies and resources utilized. Int J Mol Sci 23(23):14621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fazeli N, Arefian E, Irani S, Ardeshirylajimi A, Seyedjafari E (2021) 3D-printed PCL scaffolds coated with nanobioceramics enhance osteogenic differentiation of stem cells. ACS Omega 6(51):35284–35296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srinath P, Abdul Azeem P, Venugopal Reddy K (2020) Review on calcium silicate-based bioceramics in bone tissue engineering. Int J Appl Ceram Technol 17(5):2450–2464

    Article  CAS  Google Scholar 

  19. Wu J, Sun J, Liu J (2014) Evaluation of PHBV/calcium silicate composite scaffolds for cartilage tissue engineering. Appl Surf Sci 317:278–283

    Article  CAS  ADS  Google Scholar 

  20. Wu C, Chang J (2013) A review of bioactive silicate ceramics. Biomed Mater 8(3):032001

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  21. Li H, Xue K, Kong N, Liu K, Chang J (2014) Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials 35(12):3803–3818

    Article  CAS  PubMed  Google Scholar 

  22. Li JJ, Akey A, Dunstan CR, Vielreicher M, Friedrich O, Bell DC, Zreiqat H (2018) Effects of material–tissue interactions on bone regeneration outcomes using baghdadite implants in a large animal model. Adv Healthcare Mater 7(15):1800218

    Article  Google Scholar 

  23. Roohani-Esfahani S, Dunstan C, Davies B, Pearce S, Williams R, Zreiqat H (2012) Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomater 8(11):4162–4172

    Article  CAS  PubMed  Google Scholar 

  24. Schumacher TC, Volkmann E, Yilmaz R, Wolf A, Treccani L, Rezwan K (2014) Mechanical evaluation of calcium-zirconium-silicate (baghdadite) obtained by a direct solid-state synthesis route. J Mech Behav Biomed Mater 34:294–301

    Article  CAS  PubMed  Google Scholar 

  25. Pham DQ, Berndt CC, Cizek J, Gbureck U, Zreiqat H, Lu Z, Ang ASM (2021) Baghdadite coating formed by hybrid water-stabilized plasma spray for bioceramic applications: mechanical and biological evaluations. Mater Sci Eng C 122:111873

    Article  CAS  Google Scholar 

  26. Emadi H, Karevan M, Masoudi Rad M, Sadeghzade S, Pahlevanzadeh F, Khodaei M, Khayatzadeh S, Lotfian S (2023) Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applications. Polymers 15(17):3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. No YJ, Holzmeister I, Lu Z, Prajapati S, Shi J, Gbureck U, Zreiqat H (2019) Effect of baghdadite substitution on the physicochemical properties of brushite cements. Materials 12(10):1719

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Zhang D, Jonhson W, Herng TS, Ang YQ, Yang L, Tan SC, Peng E, He H, Ding J (2020) A 3D-printing method of fabrication for metals, ceramics, and multi-materials using a universal self-curable technique for robocasting. Mater Horiz 7(4):1083–1090

    Article  CAS  Google Scholar 

  29. Paredes C, Martinez-Vazquez FJ, Pajares A, Miranda P (2019) Development by robocasting and mechanical characterization of hybrid HA/PCL coaxial scaffolds for biomedical applications. J Eur Ceram Soc 39(14):4375–4383

    Article  CAS  Google Scholar 

  30. Peng E, Zhang D, Ding J (2018) Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater 30(47):1802404

    Article  Google Scholar 

  31. Eqtesadi S, Motealleh A, Pajares A, Guiberteau F, Miranda P (2015) Influence of sintering temperature on the mechanical properties of ϵ-PCL-impregnated 45S5 bioglass-derived scaffolds fabricated by robocasting. J Eur Ceram Soc 35(14):3985–3993

    Article  CAS  Google Scholar 

  32. de Luna MS, Filippone G (2016) Effects of nanoparticles on the morphology of immiscible polymer blends–challenges and opportunities. Eur Polymer J 79:198–218

    Article  Google Scholar 

  33. Gibson LJ (2003) Cellular solids. MRS Bull 28(4):270–274

    Article  Google Scholar 

  34. Lee D-W, Khan KA, Al-Rub RKA (2017) Stiffness and yield strength of architectured foams based on the Schwarz Primitive triply periodic minimal surface. Int J Plast 95:1–20

    Article  Google Scholar 

  35. Al-Ketan O, Al-Rub RKA, Rowshan R (2018) The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J Mater Res 33(3):343–359

    Article  CAS  ADS  Google Scholar 

  36. T. Kokubo, H. Takadama (2007) Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants, Handbook of biomineralization: biological aspects and structure formation. https://doi.org/10.1002/9783527619443.ch51

  37. FDIS I 23317 (2007) Implants for surgery-In vitro evaluation for apatiteforming ability of implant materials, International Standard

  38. Soleymani F, Emadi R, Sadeghzade S, Tavangarian F (2019) Applying baghdadite/PCL/chitosan nanocomposite coating on AZ91 magnesium alloy to improve corrosion behavior, bioactivity, and biodegradability. Coatings 9(12):789

    Article  CAS  Google Scholar 

  39. Vaez S, Emadi R, Sadeghzade S, Salimijazi H, Kharaziha M (2022) Electrophoretic deposition of chitosan reinforced baghdadite ceramic nano-particles on the stainless steel 316L substrate to improve biological and physical characteristics. Mater Chem Phys 282:125991

    Article  CAS  Google Scholar 

  40. Souza TG, Ciminelli VS, Mohallem NDS (2016) A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J Phys Conf Ser 733:012039

    Article  Google Scholar 

  41. Armani DK, Liu C (2000) Microfabrication technology for polycaprolactone, a biodegradable polymer. J Micromech Microeng 10(1):80

    Article  CAS  Google Scholar 

  42. Motloung MP, Mofokeng TG, Ray SS (2021) Viscoelastic, thermal, and mechanical properties of melt-processed poly (ε-caprolactone)(PCL)/hydroxyapatite (HAP) composites. Materials 15(1):104

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Trakoolwannachai V, Kheolamai P, Ummartyotin S (2019) Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Compos B Eng 173:106974

    Article  CAS  Google Scholar 

  44. Qi Y, Wang C, Wang Q, Zhou F, Li T, Wang B, Su W, Shang D, Wu S (2023) A simple, quick, and cost-effective strategy to fabricate polycaprolactone/silk fibroin nanofiber yarns for biotextile-based tissue scaffold application. Eur Polymer J 186:111863

    Article  CAS  Google Scholar 

  45. Pattanashetti NA, Viana T, Alves N, Mitchell GR, Kariduraganavar MY (2020) Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. J Polym Res 27(4):1–13

    Article  Google Scholar 

  46. Rigogliusoa S, Paviab FC, Brucatob V, La Carrubbab V, Faviac P, Intranuovoc F, Gristinad R, Ghersi G (2012) Use of modified 3D scaffolds to improve cell adhesion and drive desired cell responses. Chem Eng 27

  47. Park SA, Lee SH, Kim WD (2011) Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng 34(4):505–513

    Article  PubMed  Google Scholar 

  48. Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3(2):231–245

    Article  CAS  PubMed  Google Scholar 

  49. Freeman F, Browe D, Nulty J, Von Euw S, Grayson W, Kelly D (2019) Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Eur Cells Mater 38:168–187

    Article  CAS  Google Scholar 

  50. Polley C, Distler T, Detsch R, Lund H, Springer A, Boccaccini AR, Seitz H (2020) 3D Printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials 13:1773

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Tarafder S, Davies NM, Bandyopadhyay A, Bose S (2013) 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci 1(12):1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar A, Nune K, Murr L, Misra R (2016) Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. Int Mater Rev 61(1):20–45

    Article  CAS  Google Scholar 

  53. Tian L, Zhang Z, Tian B, Zhang X, Wang N (2020) Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv 10(8):4805–4816

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Zhu J, Tang D, Lu Z, Xin Z, Song J, Meng J, Lu JR, Li Z, Li J (2020) Ultrafast bone-like apatite formation on highly porous poly (l-lactic acid)-hydroxyapatite fibres. Mater Sci Eng, C 116:111168

    Article  CAS  Google Scholar 

  55. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W (2006) Biomaterials as scaffold for bone tissue engineering. Eur J Trauma 32:114–124

    Article  Google Scholar 

  56. Ramay HR, Zhang M (2004) Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25(21):5171–5180

    Article  CAS  PubMed  Google Scholar 

  57. Al-Musawi MH, Rashidi M, Mohammadzadeh V, Albukhaty S, Mahmoudi E, Ghorbani M (2023) Development of a novel scaffold based on Basil seed gum/chitosan hydrogel containing quercetin-loaded zein microshphere for bone tissue engineering. J Polym Environ 31:1–14

    Article  Google Scholar 

  58. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee H-P, Lippens E, Duda GN (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Pahlevanzadeh F, Emadi R, Setayeshmehr M, Kharaziha M, Poursamar S (2022) Antibacterial amorphous magnesium phosphate/graphene oxide for accelerating bone regeneration. Biomater Adv 138:212856

    Article  CAS  PubMed  Google Scholar 

  60. Liu F, Kang H, Liu Z, Jin S, Yan G, Sun Y, Li F, Zhan H, Gu Y (2021) 3D Printed multi-functional scaffolds based on poly (ε-caprolactone) and hydroxyapatite composites. Nanomaterials 11(9):2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moncal KK, Heo DN, Godzik KP, Sosnoski DM, Mrowczynski OD, Rizk E, Ozbolat V, Tucker SM, Gerhard EM, Dey M (2018) 3D printing of poly (ε-caprolactone)/poly (D, L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J Mater Res 33(14):1972–1986

    Article  CAS  ADS  Google Scholar 

  62. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W (2019) 3D printing of HA/PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res 2(4):196–202

    Google Scholar 

  63. Mokhtari S, Eftekhari Yekta B, Marghussian V, Ahmadi PT (2020) Synthesis and characterization of biodegradable AZ31/calcium phosphate glass composites for orthopedic applications. Adv Composit Hybrid Mater 3(3):390–401

    Article  CAS  Google Scholar 

  64. Liu C, Wan P, Tan LL, Wang K, Yang K (2014) Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications. J Orthop Transl 2(3):139–148

    Google Scholar 

  65. Moczo J, Pukanszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14(5):535–563

    Article  CAS  Google Scholar 

  66. Silvestre J, Silvestre N, De Brito J (2015) An overview on the improvement of mechanical properties of ceramics nanocomposites. J Nanomater 2015:1–13

    Article  Google Scholar 

  67. Kazemi M, Mirzadeh M, Esmaeili H, Kazemi E, Rafienia M, Poursamar SA (2022) Evaluation of the morphological effects of hydroxyapatite nanoparticles on the rheological properties and printability of hydroxyapatite/polycaprolactone nanocomposite inks and final scaffold features. Print Addit Manufact. https://doi.org/10.1089/3dp.2021.0292

    Article  Google Scholar 

  68. Saleh DI, El-Naggar ME, Ali OAA, Abu-Saied M, Ahmed M, Abdel-Fattah E, Abou Taleb MF, Salem SR (2022) Nanofibrous matrix of polycaprolactone embedded with zinc/vanadate doped hydroxyapatite: mechanical and in vitro cellular growth. J Mater Res Technol 16:773–785

    Article  CAS  Google Scholar 

  69. Pham DQ, Berndt C, Gbureck U, Zreiqat H, Truong VK, Ang A (2019) Mechanical and chemical properties of Baghdadite coatings manufactured by atmospheric plasma spraying. Surf Coat Technol 378:124945

    Article  CAS  Google Scholar 

  70. Arefpour A, Zolfaghari Baghbaderani M, Shafieirad A, Kasiri-Asgarani M, Monshi A, Karbasi S, Doostmohammadi A, Shahsavar Goldanlou A (2022) Mechanical behaviour, hybridisation and osteoblast activities of novel baghdadite/PCL-graphene nanocomposite scaffold: viability, cytotoxicity and calcium activity. Mater Technol 37(7):472–485

    Article  CAS  ADS  Google Scholar 

  71. Yu H, Matthew HW, Wooley PH, Yang SY (2008) Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone-hydroxyapatite composites, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for. Biomaterials 86(2):541–547

    Google Scholar 

  72. Torres-Sanchez C, Al Mushref F, Norrito M, Yendall K, Liu Y, Conway P (2017) The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater Sci Eng: C 77:219–228

    Article  CAS  Google Scholar 

  73. Pahlevanzadeh F, Bakhsheshi-Rad HR, Ismail AF, Aziz M (2019) Apatite-forming ability, cytocompatibility, and mechanical properties enhancement of poly methyl methacrylate-based bone cements by incorporating of baghdadite nanoparticles. Int J Appl Ceram Technol 16(5):2006–2019

    Article  CAS  Google Scholar 

  74. Sadeghzade S, Liu J, Wang H, Li X, Cao J, Cao H, Yuan H (2022) Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio 17:100473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abbasi Soureshjani F, Nilforoushan MR, Sharifi H, Arefpour A, Doostmohammadi A (2021) Improvement in mechanical and biological performance of porous baghdadite scaffold by applying chitosan coating. Appl Phys A 127(5):1–12

    Article  Google Scholar 

  76. Sadeghzade S, Emadi R, Tavangarian F, Doostmohammadi A (2020) In vitro evaluation of diopside/baghdadite bioceramic scaffolds modified by polycaprolactone fumarate polymer coating. Mater Sci Eng, C 106:110176

    Article  CAS  Google Scholar 

  77. No YJ, Li JJ, Zreiqat H (2017) Doped calcium silicate ceramics: a new class of candidates for synthetic bone substitutes. Materials 10(2):153

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  78. Ramaswamy Y, Wu C, Van Hummel A, Combes V, Grau G, Zreiqat H (2008) The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials 29(33):4392–4402

    Article  CAS  PubMed  Google Scholar 

  79. Karimi M, Asefnejad A, Aflaki D, Surendar A, Baharifar H, Saber-Samandari S, Khandan A, Khan A, Toghraie D (2021) Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. J Market Res 14:3070–3079

    CAS  Google Scholar 

  80. Kim SW, Jung H-D, Kang M-H, Kim H-E, Koh Y-H, Estrin Y (2013) Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer. Mater Sci Eng, C 33(5):2808–2815

    Article  CAS  Google Scholar 

  81. Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior I, Dissolution. J Biomed Mater Res 27(1):25–34

    Article  CAS  PubMed  Google Scholar 

  82. Mohamed RM, Yusoh K (2016) A review on the recent research of polycaprolactone (PCL). Adv Mater Res 1134:249–255

    Article  Google Scholar 

  83. No YJ, Roohani-Esfahani SI, Lu Z, Schaer T, Zreiqat H (2015) Injectable radiopaque and bioactive polycaprolactone-ceramic composites for orthopedic augmentation. J Biomed Mater Res B Appl Biomater 103(7):1465–1477

    Article  CAS  PubMed  Google Scholar 

  84. Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birke O, McDonald M, Little D, Dunstan CR (2010) The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials 31(12):3175–3184

    Article  CAS  PubMed  Google Scholar 

  85. Lee T, Wang B, Yang Y, Chang E, Yang C-Y (2001) Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: In vivo study, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for. Biomaterials 55(3):360–367

    CAS  Google Scholar 

  86. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29(9):1177–1188

    Article  CAS  PubMed  Google Scholar 

  87. Lee H, Hwang H, Kim Y, Jeon H, Kim G (2014) Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration. Chem Eng J 250:399–408

    Article  CAS  Google Scholar 

  88. Sadeghpour S, Amirjani A, Hafezi M, Zamanian A (2014) Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceram Int 40(10):16107–16114

    Article  CAS  Google Scholar 

  89. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW-H (2018) The roles of ions on bone regeneration. Drug Discov Today 23(4):879–890

    Article  PubMed  Google Scholar 

  90. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Supplement 1):S23–S30

    Article  CAS  PubMed  Google Scholar 

  91. Ramaswamy Y, Wu C, Zhou H, Zreiqat H (2008) Biological response of human bone cells to zinc-modified Ca–Si-based ceramics. Acta Biomater 4(5):1487–1497

    Article  CAS  PubMed  Google Scholar 

  92. Nasser Atia GA, Barai HR, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Nasser Attia HA, Joo SW (2022) Baghdadite: a novel and promising calcium silicate in regenerative dentistry and medicine. ACS Omega 7(49):44532–44541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HE: writing— the main manuscript text, visualization, Conceptualization, methodology, validation, formal analysis MB and MB: Conceptualization, methodology, validation, review and editing MK: methodology, formal analysis, writing review and editing FT: Writing review and editing

Corresponding authors

Correspondence to Hosein Emadi or Majid Baniassadi.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadi, H., Baghani, M., Khodaei, M. et al. Development of 3D-Printed PCL/ Baghdadite Nanocomposite Scaffolds for Bone Tissue Engineering Applications. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03156-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03156-7

Keywords

Navigation