Skip to main content
Log in

Assessment of a Novel Xanthan Gum-Based Composite for Oil Recovery Improvement at Reservoir Conditions; Assisted with Simulation and Economic Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chemical flooding is a crucial technique in petroleum recovery. Although synthetic polyacrylamides are widely used, they suffer from hard reservoir conditions (high salinity, temperature, and pressure) and high costs. Current efforts focus on eco-friendly and affordable biopolymers like xanthan gum to overcome these issues. This study screens xanthan gum modification to improve its rheological properties and tolerance to high temperature, salinity, and shearing action by copolymerizing it with vinyl silane, vinyl monomers, and silica nanoparticles. The new composite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Atomic Force Microscopy (AFM), and proton Nuclear Magnetic Resonance (NMR) tests. Its implementation was evaluated in polymer flooding at 2200 psi pressure, 135,000 ppm salinity, and 196°F temperature. Unlike previous studies that evaluated xanthan gum at 176 °F, 1800 psi, and 30,000 ppm, without combining those three factors in one experiment. The rheological properties of native and composite xanthan were examined at reservoir conditions, as well as their viscoelastic properties (G′ and G″). Flooding runs used actual Bahariya formation cores at the lab scale. Simulation studies were conducted on a lab/field scale using the tNavigator simulator and economic feasibility to calculate the net present value. The most outcoming findings of this research comprise (1) investigating the impact of salinity, temperature, and pressure on the rheological properties of native and composite xanthan. (2) The composite xanthan exhibits more resistant criteria, as it recovered 27% residual oil versus 22% for native xanthan. (3) Modeling and simulation studies exhibit 48% oil recovery for composite versus 39% for native xanthan and 37% for water flooding. (4) Economically, using native and composite xanthan through enhanced oil recovery methods increased net present value to $32 mm and $58 mm versus traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

EOR:

Enhanced oil recovery

OOIP:

Original oil in place

FTIR:

Fourier transform infrared spectroscopy

AFM:

Atomic force microscopy

TGA:

Thermal gravimetric analysis

NMR:

Proton nuclear magnetic resonance tests

(G'):

Elastic or storage modulus

(G"):

Viscous or loss modulus

Sor:

Residual oil saturation

References

  1. Satter A, Iqbal GM, Buchwalter JL (2008) Practical enhanced reservoir engineering: assisted with simulation software. PennWell Corporation, Tulsa

    Google Scholar 

  2. El-Hoshoudy A, Mohammedy M, Ramzi M, Desouky S, Attia A (2019) Experimental, modeling and simulation investigations of a novel surfmer-co-poly acrylates crosslinked hydrogels for water shut-off and improved oil recovery. J Mol Liq 277:142–156

    Article  CAS  Google Scholar 

  3. El-Hoshoudy A, Desouky S, Al-Sabagh A, Betiha M et al (2017) Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate. Egypt J Petrol 26(3):779–785

    Article  Google Scholar 

  4. Satter A, Thakur GC (1994) Integrated petroleum reservoir management: a team approach. University of Queensland, Brisbane

    Google Scholar 

  5. Ezekwe N (2010) Petroleum reservoir engineering practice. Prentice Hall, Pearson Education

    Google Scholar 

  6. El-Hoshoudy A, Gomaa S, Hassan A, Attia A (2019) Effects of alkaline/polymer/nanofluids on oil recovery at harsh reservoir conditions. Petrol Coal 61(6):1552

    CAS  Google Scholar 

  7. Soliman AA, El-Hoshoudy AN, Attia AM (2020) Assessment of xanthan gum and xanthan-g-silica derivatives as chemical flooding agents and rock wettability modifiers. Oil Gas Sci Technol 75:12

    Article  CAS  Google Scholar 

  8. Couto MR, Gudiña EJ, Ferreira D, Teixeira J, Rodrigues L, Soares L et al (2018) Characterization of a biopolymer produced by Arthrobacter Viscosus CECT 908 for application in microbial enhanced oil recovery. In: SPE EOR conference at oil and gas West Asia. OnePetro

  9. Schramm G (1994) A practical approach to rheology and rheometry. Haake Karlsruhe, Karlsruhe

    Google Scholar 

  10. Margaritis A, Zajic JE (1978) Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnol Bioeng 20(7):939–1001

    Article  CAS  Google Scholar 

  11. Garcıa-Ochoa F, Santos V, Casas J, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579

    Article  PubMed  Google Scholar 

  12. Xia S, Zhang L, Davletshin A, Li Z, You J, Tan S (2020) Application of polysaccharide biopolymer in petroleum recovery. Polymers 12(9):1860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xu L, Xu G, Yu L, Gong H, Dong M, Li Y (2014) The displacement efficiency and rheology of welan gum for enhanced heavy oil recovery. Polym Adv Technol 25(10):1122–1129

    Article  CAS  Google Scholar 

  14. Littmann W, Kleinitz W, Christensen B, Stokke B, Haugvallstad T (1992) Late results of a polymer pilot test: performance, simulation adsorption, and xanthan stability in the reservoir. In: SPE/DOE enhanced oil recovery symposium. OnePetro

  15. Guo X, Li W, Tian J, Liu Y (1999) Pilot test of xanthan gum flooding in Shengli oilfield. In: SPE Asia pacific improved oil recovery conference. OnePetro

  16. Pu W, Shen C, Wei B, Yang Y, Li Y (2018) A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. J Ind Eng Chem 61:1–11

    Article  CAS  Google Scholar 

  17. Yang C, Qian Y, Lou Z, Li X, Liu R, Zhang Z (1997) Biopolymer flooding pilot test on the high viscous oil field. In: IOR 1997–9th European symposium on improved oil recovery. European Association of Geoscientists & Engineers, cp-106-00060

  18. Littmann W, Kleinitz W, Christensen B, Stokke B, Haugvallstad T. Late results of a polymer pilot test: performance, simulation adsorption, and xanthan stability in the reservoir. In: SPE improved oil recovery conference? SPE. 1992:SPE-24120-MS.

  19. Song K-W, Kim Y-S, Chang G-S (2006) Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers Polym 7:129–138

    Article  Google Scholar 

  20. Jang HY, Zhang K, Chon BH, Choi HJ (2015) Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J Ind Eng Chem 21:741–745

    Article  CAS  Google Scholar 

  21. Ghriga MA, Hasanzadeh M, Gareche M, Lebouachera SEI, Drouiche N, Grassl B (2019) Thermal gelation of partially hydrolysed polyacrylamide/polyethylenimine mixtures using design of experiments approach. Mater Today Commun 21:100686

    Article  CAS  Google Scholar 

  22. Ghriga MA, Lebouachera SEI, Drouiche N, Grassl B (2021) Investigating the viscoelastic behavior of partially hydrolyzed polyacrylamide/polyethylenimine mixtures. J Polym Res 28(8):275

    Article  CAS  Google Scholar 

  23. Ghriga MA, Gareche M, Khodja M, Andreu N, Lebouachera SEI, Khoukh A et al (2020) Structure–property relationships of the thermal gelation of partially hydrolyzed polyacrylamide/polyethylenimine mixtures in a semidilute regime. Polym Bull 77(3):1465–1488

    Article  CAS  Google Scholar 

  24. Lebouachera SEI, Ghriga MA, Salha GB, Hadri HE, Hasanzadeh M, Drouiche N et al (2021) Optimization of zero-shear viscosity for HPAM-polystyrene microspheres formulations through experimental design approach. J Polym Res 28:1–12

    Article  Google Scholar 

  25. Ghriga MA, Grassl B, Gareche M, Khodja M, Lebouachera SEI, Andreu N et al (2019) Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications. Polym Bull 76:6001–6029

    Article  CAS  Google Scholar 

  26. Lebouachera SEI, Pessoni L, Ghriga MA, Andreu N, Chemini R, Grassl B et al (2019) Rheological behaviour and adsorption phenomenon of a polymer–particle composite based on hydrolysed polyacrylamide/functionalized poly (styrene-acrylic acid) microspheres. Soft Matter 15(27):5449–5454

    Article  PubMed  CAS  Google Scholar 

  27. Ghoumrassi-Barr S, Aliouche D (2016) A rheological study of xanthan polymer for enhanced oil recovery. J Macromol Sci Part B 55(8):793–809

    Article  Google Scholar 

  28. Maurya NK, Mandal A (2016) Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery. Pet Sci Technol 34(5):429–436

    Article  CAS  Google Scholar 

  29. Gomaa S (2018) Synthesis and evaluation of Xanthan-G-poly (acrylamide) copolymer for enhanced oil recovery applications. Petrol Petrochem Eng J 2(3):1–8

    Google Scholar 

  30. Firozjaii AM, Saghafi HR (2020) Review on chemical enhanced oil recovery using polymer flooding: fundamentals, experimental and numerical simulation. Petroleum 6(2):115–122

    Article  Google Scholar 

  31. Said M, Haq B, Al Shehri D, Rahman MM, Muhammed NS, Mahmoud M (2021) Modification of xanthan gum for a high-temperature and high-salinity reservoir. Polymers 13(23):4212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fu X, Qin F, Liu T, Zhang X (2021) Enhanced oil recovery performance and solution properties of hydrophobic associative xanthan gum. Energy Fuels 36(1):181–194

    Article  Google Scholar 

  33. El-Diasty A, Khattab H, Tantawy M (2021) Application of nanofluid injection for enhanced oil recovery (EOR). J Univ Shanghai Sci Technol 23(8):1007–6735

    Google Scholar 

  34. Gbadamosi A, Yusuff A, Agi A, Muruga P, Junin R, Jeffrey O (2022) Mechanistic study of nanoparticles-assisted xanthan gum polymer flooding for enhanced oil recovery: a comparative study. J Petrol Explor Prod Technol 12:1–7

    Article  Google Scholar 

  35. Keykhosravi A, Vanani MB, Aghayari C (2021) TiO2 nanoparticle-induced xanthan gum polymer for EOR: assessing the underlying mechanisms in oil-wet carbonates. J Petrol Sci Eng 204:108756

    Article  CAS  Google Scholar 

  36. Navaie F, Esmaeilnezhad E, Choi HJ (2022) Xanthan gum-added natural surfactant solution of Chuback: a green and clean technique for enhanced oil recovery. J Mol Liq 354:118909

    Article  CAS  Google Scholar 

  37. An Y, Yao X, Zhong J, Pang S, Xie H (2022) Enhancement of oil recovery by surfactant-polymer synergy flooding: a review. Polym Polym Compos 30:09673911221145834

    CAS  Google Scholar 

  38. Ghannam MT, Selim MY, Zekri AY, Esmail N (2023) Rheological assessment of oil-xanthan emulsions in terms of complex, storage, and loss moduli. Polymers 15(2):470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Buitrago-Rincon DL, Sadtler V, Mercado RA, Roques-Carmes T, Marchal P, Muñoz-Navarro SF et al (2023) Silica nanoparticles in xanthan gum solutions: oil recovery efficiency in core flooding tests. Nanomaterials 13(5):925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tulegenovna KP, Negim E-S, Al Azzam KM, Bustam MA (2022) Modification of xanthan gum with methyl methacrylate and investigation of its rheological properties. Int J Technol 13:389–397

    Article  Google Scholar 

  41. Ogunkunle TF, Oni BA, Afolabi RO, Fadairo AS, Ojo T, Adesina O (2022) Comparative analysis of the performance of hydrophobically associating polymers, xanthan and guar gum as mobility controlling agents in enhanced oil recovery application. J King Saud Univ 34(7):402–407

    Google Scholar 

  42. Badwaik HR, Sakure K, Alexander A, Dhongade H, Tripathi DK (2016) Synthesis and characterisation of poly (acryalamide) grafted carboxymethyl xanthan gum copolymer. Int J Biol Macromol 85:361–369

    Article  PubMed  CAS  Google Scholar 

  43. Pandey S, Mishra SB (2011) Graft copolymerization of ethylacrylate onto xanthan gum, using potassium peroxydisulfate as an initiator. Int J Biol Macromol 49(4):527–535

    Article  PubMed  CAS  Google Scholar 

  44. Bera A, Shah S, Shah M, Agarwal J, Vij RK (2020) Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids Surf A 598:124833

    Article  CAS  Google Scholar 

  45. Cheraghian G (2015) Effects of nanoparticles on wettability: a review on applications of nanotechnology in the enhanced oil recovery. Int J Nano Dimens 6(5):443–452

    CAS  Google Scholar 

  46. Ramirez WF (1987) Application of optimal control theory to enhanced oil recovery. Elsevier, New York

    Google Scholar 

  47. El-hoshoudy AN, Desouky SM, Betiha MH, Alsabagh AM (2017) Hydrophobic polymers flooding. Application and characterization of surfactants. InTechopen, London, pp 75–95

    Google Scholar 

  48. El-Hoshoudy AN (2021) Experimental and theoretical investigation of glycol-based hydrogels through waterflooding processes in oil reservoirs using molecular dynamics and dissipative particle dynamics simulation. ACS Omega 6(45):30224–30240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. El-hoshoudy A (2022) Experimental and theoretical investigation for synthetic polymers, biopolymers and polymeric nanocomposites application in enhanced oil recovery operations. Arab J Sci Eng 47(9):10887–10915

    Article  CAS  Google Scholar 

  50. Zhu W, Zheng X, Shi J, Wang Y (2021) A high-temperature resistant colloid gas aphron drilling fluid system prepared by using a novel graft copolymer xanthan gum-AA/AM/AMPS. J Petrol Sci Eng 205:108821

    Article  CAS  Google Scholar 

  51. Abou-alfitooh SA, El-Hosiny F, Ramzi M, Mansour E, Elnaggar OM, El-hoshoudy A (2021) Chemical modification of guar by different synthetic vinyl monomers for enhancing oil recovery under severe sandstone reservoir conditions. Egypt J Pet 30(3):35–43

    Article  Google Scholar 

  52. Zheng M, Lian F, Xiong Y, Liu B, Zhu Y, Miao S et al (2019) The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel. Food Chem 272:574–579

    Article  PubMed  CAS  Google Scholar 

  53. Chakraborty S, Dutta B, Ghosh N, Halder S, Chatterjee R, Sengupta S et al (2023) Strategic grafting of poly METAC and polyacrylamide onto xanthan gum for flocculating kaolin at lower concentration. Mater Today Commun 34:105091

    Article  CAS  Google Scholar 

  54. Guan Y, Yu C, Zang Z, Wan X, Naeem A, Zhang R et al (2023) Chitosan/xanthan gum-based (Hydroxypropyl methylcellulose-co-2-acrylamido-2-methylpropane sulfonic acid) interpenetrating hydrogels for controlled release of amorphous solid dispersion of bioactive constituents of Pueraria lobatae. Int J Biol Macromol 224:380–395

    Article  PubMed  CAS  Google Scholar 

  55. Kumar A, Deepak, Sharma S, Srivastava A, Kumar R. Synthesis of xanthan gum graft copolymer and its application for controlled release of highly water soluble Levofloxacin drug in aqueous medium. Carbohydr Polym 2017;171:211–219.

  56. Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly (acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydr Polym 76(2):261–267

    Article  CAS  Google Scholar 

  57. Maia AM, Silva HV, Curti PS, Balaban RC (2012) Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydr Polym 90(2):778–783

    Article  PubMed  CAS  Google Scholar 

  58. Mundargi RC, Patil SA, Aminabhavi TM (2007) Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr Polym 69(1):130–141

    Article  CAS  Google Scholar 

  59. Zhang H, Lou T, Wang X (2023) Synthesis and properties of xanthan gum-acrylamide-carboxymethyl cellulose ternary anionic flocculants. J Water Process Eng 56:104455

    Article  Google Scholar 

  60. Zheng M, Lian F, Zhu Y, Zhang Y, Liu B, Zhang L et al (2019) pH-responsive poly (xanthan gum-g-acrylamide-g-acrylic acid) hydrogel: preparation, characterization, and application. Carbohydr Polym 210:38–46

    Article  PubMed  CAS  Google Scholar 

  61. El-Hoshoudy A, Desouky S, Betiha M, Alsabagh A (2016) Use of 1-vinyl imidazole based surfmers for preparation of polyacrylamide–SiO2 nanocomposite through aza-Michael addition copolymerization reaction for rock wettability alteration. Fuel 170:161–175

    Article  CAS  Google Scholar 

  62. Riedel C, Alegria A, Colmenero J, Tordjeman P, Euskal V, Unibertsitatea H (2002) Polymer rheology by dielectric spectroscopy

  63. Thomas A (2019) Essentials of polymer flooding technique. Wiley, New York

    Book  Google Scholar 

  64. Ghriga MA, Khoukh A, Lebouachera SEI, Grassl B (2022) NMR investigation on the thermogelation of partially hydrolysed polyacrylamide/polyethylenimine mixtures. Soft Matter 18(37):7075–7081

    Article  PubMed  CAS  Google Scholar 

  65. El-Hoshoudy A, Zaki E, Elsaeed S (2020) Experimental and Monte Carlo simulation of palmitate-guar gum derivative as a novel flooding agent in the underground reservoir. J Mol Liq 302:112502

    Article  CAS  Google Scholar 

  66. Moffat J, Morris VJ, Al-Assaf S, Gunning AP (2016) Visualisation of xanthan conformation by atomic force microscopy. Carbohydr Polym 148:380–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Elsaeed SM, Zaki EG, Omar WA, Ashraf Soliman A, Attia AM (2021) Guar gum-based hydrogels as potent green polymers for enhanced oil recovery in high-salinity reservoirs. ACS Omega 6(36):23421–23431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dey SC, Al-Amin M, Rashid TU, Sultan MZ, Ashaduzzaman M, Sarker M et al (2016) Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red. Int J Latest Res Eng Technol 2(2):52–62

    Google Scholar 

  69. El-hoshoudy A, Mansour E, Desouky S (2020) Experimental, computational and simulation oversight of silica-co-poly acrylates composite prepared by surfactant-stabilized emulsion for polymer flooding in unconsolidated sandstone reservoirs. J Mol Liq 308:113082

    Article  CAS  Google Scholar 

  70. Vásquez E, Piguillem Palacios SV, Rubio S, Diaz JRA, Baldoni HA, Vega E et al (2020) Structural analysis of xanthan GUM-FE (III) capsules. Acad J Chem 5:31–40. https://doi.org/10.32861/ajc.54.31.40

    Article  CAS  Google Scholar 

  71. Singh R, Mahto V (2017) Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery. Pet Sci 14:765–779

    Article  CAS  Google Scholar 

  72. Stieger M (2002) The rheology handbook-for users of rotational and oscillatory rheometers. Appl Rheol 12(5):232

    Article  Google Scholar 

  73. Durand D, Chassenieux C, Jyotishkumar P, Thomas S (2013) Handbook of biopolymer-based materials: from blends and composites to gels and complex networks. Wiley, New York

    Google Scholar 

  74. Zhong L, Oostrom M, Truex MJ, Vermeul VR, Szecsody JE (2013) Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J Hazard Mater 244:160–170

    Article  PubMed  Google Scholar 

  75. Salem KG, Tantawy MA, Gawish AA, Gomaa S, El-hoshoudy A (2023) Nanoparticles assisted polymer flooding: comprehensive assessment and empirical correlation. Geoenergy Sci Eng 226:211753

    Article  CAS  Google Scholar 

  76. Seyssiecq I, Ferrasse J-H, Roche N (2003) State-of-the-art: rheological characterisation of wastewater treatment sludge. Biochem Eng J 16(1):41–56

    Article  CAS  Google Scholar 

  77. Stanciu I (2018) Rheological mathematical models of dependence dynamic viscosity-shear rate for soybean oil. J Sci Arts 4:1001–1006

    Google Scholar 

  78. Fang Y, Takahashi R, Nishinari K (2004) Rheological characterization of schizophyllan aqueous solutions after denaturation–renaturation treatment. Biopolymers 74(4):302–315

    Article  PubMed  CAS  Google Scholar 

  79. Yudhowijoyo A, Rafati R, Haddad AS, Pokrajac D, Manzari M (2019) Developing nanocomposite gels from biopolymers for leakage control in oil and gas wells. In: SPE offshore Europe conference and exhibition. OnePetro

  80. Kakadjian S, Rauseo O, Mejias F (1999) Dynamic rheology as a method for quantify gel strength of water shutoff systems. In: SPE international symposium on oilfield chemistry. OnePetro

  81. Ahmed J, Ramaswamy H (2004) Effect of high-hydrostatic pressure and concentration on rheological characteristics of xanthan gum. Food Hydrocolloids 18(3):367–373

    Article  CAS  Google Scholar 

  82. Wolf B, Geerissen H, Jend R, Schmidt J (1982) Pressure influences on the viscosity of polymer solutions. In: Progress and trends in rheology: proceedings of the first conference of European Rheologists Graz (Austria), April 14–16, pp 151–153. Springer

  83. Rudolph N, Osswald TA (2014) Polymer rheology: fundamentals and applications. Carl Hanser Verlag GmbH Co KG, Munich

    Google Scholar 

  84. Mezger T (2020) The rheology handbook: for users of rotational and oscillatory rheometers, 5th edn. Buchdruck Zentrum, Prüm

  85. Gupta RK (2000) Polymer and composite rheology. CRC Press, Boca Raton

    Book  Google Scholar 

  86. Mrokowska MM, Krztoń-Maziopa A (2019) Viscoelastic and shear-thinning effects of aqueous exopolymer solution on disk and sphere settling. Sci Rep 9(1):7897

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kontopoulou M (2011) Applied polymer rheology: polymeric fluids with industrial applications. Wiley, New York

    Book  Google Scholar 

  88. Franck A, Germany T (1993) Viscoelasticity and dynamic mechanical testing. TA Instruments, New Castle

    Google Scholar 

  89. Ahmed J (2022) Optimization of high-pressure-assisted xanthan gum dispersions for the maximization of rheological moduli: application of time-pressure/temperature superposition principle. Food Hydrocolloids 122:107080

    Article  CAS  Google Scholar 

  90. Sowunmi A, Efeovbokhan VE, Orodu OD, Olabode O, Oputa A (2022) Comparative study of biopolymer flooding: a core flooding and numerical reservoir simulator validation analysis. Model Simul Eng. https://doi.org/10.1155/2022/9420899

    Article  Google Scholar 

  91. Sikanyika EW, Wu Z, Elbaloula HA, Afiakinye MO, Mabiala AP, Jiang S (2023) Nodal and least-cost analysis on the optimization of natural gas production system constraints to extend the plateau rate of a conceptual gas field. Geoenergy Sci Eng 226:211723

    Article  CAS  Google Scholar 

  92. Nind TEW (1981) Principles of oil well production. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AH Conceptualization, methodology, software, data gathering, original draft preparation. HK Supervising, editing, and reviewing. AAG supervising, editing, and reviewing. SG Conceptualization, methodology, and software. ANE Conceptualization, data curation, original draft editing, and supervision of the work.

Corresponding authors

Correspondence to Abdelnaser Hamdy or A. N. El-hoshoudy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, H., Gawish, A.A., Hamdy, A. et al. Assessment of a Novel Xanthan Gum-Based Composite for Oil Recovery Improvement at Reservoir Conditions; Assisted with Simulation and Economic Studies. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03153-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03153-w

Keywords

Navigation