Skip to main content
Log in

Hydrothermal Modification of Polyurethane Fibers Using Hyaluronic Acid and Silver Nanoparticles for Wound Healing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Different wounds take a while to heal, and the process is frequently accompanied by bacterial infection and scar formation. This study aimed to fabricate polyurethane (PU) fibers through electrospinning, utilizing a mixture of THF and DMF solvents in a 90:10 ratio. Subsequently, these fibers were coated with different concentrations of hyaluronic acid (HA) and silver (Ag) nanoparticles (NPs) using the hydrothermal treatment to create biocompatible and antibacterial scaffolds applicable to wound management. Pristine samples served as a basis for comparison. Following high-temperature usage during the hydrothermal coating, the Field emission scanning electron microscopy (FE-SEM) results showed defect-free morphology. However, the fibers’ diameter significantly increased by layer of HA. In particular, the diameter of the PU fibers was 1.87 ± 1.1 µm, whereas the fibers with the maximum amount of HA (0.5%) had an enlargement of 4.43 ± 1.4 µm in fiber diameter. The Fourier transform infrared (FTIR) spectroscopy demonstrated the presence of distinctive functional groups, supporting the hypothesis that HA and Ag NPs were efficaciously coated on PU fibers. Moreover, HA-coated fibers improved hydrophilicity, mechanical strength, thermal stability, degradability, and biomineralization. Notably, the Ag-coated scaffolds exhibited antibacterial activity against E. coli and S. aureus. The MTT assay, DAPI staining, and FE-SEM results after culturing HEK 293T cells have demonstrated the biocompatibility of the nanocomposite fibers. In other words, the developed HA and Ag NPs coated PU fibers by hydrothermal technique would be a futuristic method for promoting tissue healing and imparting antibacterial ability in curing skin wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F (2017) Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: an overview of state-of-the-art. Curr Drug Targets 19(5):527–550. https://doi.org/10.2174/1389450118666170704132523

    Article  CAS  Google Scholar 

  2. Sharifi S, Hajipour MJ, Gould L, Mahmoudi M (2021) Nanomedicine in healing chronic wounds: opportunities and challenges. Mol Pharm 18(2):550–575. https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C00346/ASSET/IMAGES/LARGE/MP0C00346_0009.JPEG

    Article  CAS  PubMed  Google Scholar 

  3. Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA (2021) Prospects of polymeric nanofibers loaded with essential oils for biomedical and food-packaging applications. Int J Mol Sci 22(8):4017. https://doi.org/10.3390/IJMS22084017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24. https://doi.org/10.1016/J.PROGPOLYMSCI.2014.12.001

    Article  Google Scholar 

  5. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241. https://doi.org/10.1016/J.MATTOD.2013.06.005

    Article  CAS  Google Scholar 

  6. Rahmati M et al (2021) Electrospinning for tissue engineering applications. Prog Mater Sci 117:100721. https://doi.org/10.1016/j.pmatsci.2020.100721

    Article  CAS  Google Scholar 

  7. Gabriel LP, Rodrigues AA, Macedo M, Jardini AL, MacielFilho R (2017) Electrospun polyurethane membranes for tissue engineering applications. Mater Sci Eng C 72:113–117. https://doi.org/10.1016/j.msec.2016.11.057

    Article  CAS  Google Scholar 

  8. Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU (2014) Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 39:95–110. https://doi.org/10.1016/J.JMBBM.2014.06.019

    Article  CAS  PubMed  Google Scholar 

  9. Honarkar H (2017) Waterborne polyurethanes: a review. J Dispersion Sci Technol 39(4):507–516. https://doi.org/10.1080/01932691.2017.1327818

    Article  CAS  Google Scholar 

  10. Mani MP, Jaganathan SK, Ismail AF (2019) Appraisal of electrospun textile scaffold comprising polyurethane decorated with ginger nanofibers for wound healing applications. J Ind Text 49(5):648–662. https://doi.org/10.1177/1528083718795911/ASSET/IMAGES/LARGE/10.1177_1528083718795911-FIG2.JPEG

    Article  CAS  Google Scholar 

  11. Pant B, Park M, Ojha GP, Kim DU, Kim HY, Park SJ (2017) Electrospun salicylic acid/polyurethane composite nanofibers for biomedical applications. Int J Polym Mater Polym Biomater 67(12):739–744. https://doi.org/10.1080/00914037.2017.1376200

    Article  CAS  Google Scholar 

  12. Lee MJ et al (2019) Curcumin-loaded biodegradable polyurethane scaffolds modified with gelatin using 3D printing technology for cartilage tissue engineering. Polym Adv Technol 30(12):3083–3090. https://doi.org/10.1002/PAT.4740

    Article  CAS  Google Scholar 

  13. Kim SE et al (2009) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4(4):044106. https://doi.org/10.1088/1748-6041/4/4/044106

    Article  CAS  PubMed  Google Scholar 

  14. Mistry P et al (2021) Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C 119:111316. https://doi.org/10.1016/J.MSEC.2020.111316

    Article  CAS  Google Scholar 

  15. Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H (2021) Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol 180:590–598. https://doi.org/10.1016/J.IJBIOMAC.2021.03.001

    Article  CAS  PubMed  Google Scholar 

  16. Dehghan-Manshadi N, Fattahi S, Hadizadeh M, Nikukar H, Moshtaghioun SM, Aflatoonian B (2019) The influence of elastomeric polyurethane type and ratio on the physicochemical properties of electrospun polyurethane/silk fibroin hybrid nanofibers as potential scaffolds for soft and hard tissue engineering. Eur Polym J 121:109294. https://doi.org/10.1016/J.EURPOLYMJ.2019.109294

    Article  CAS  Google Scholar 

  17. Anilkumar TV, Muhamed J, Jose A, Jyothi A, Mohanan PV, Krishnan LK (2011) Advantages of hyaluronic acid as a component of fibrin sheet for care of acute wound. Biologicals 39(2):81–88. https://doi.org/10.1016/J.BIOLOGICALS.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahimi-Hosseinzadeh B et al (2016) In vivo evaluation of gelatin/hyaluronic acid nanofiber as burn-wound healing and its comparison with ChitoHeal gel. Fibers Polym 17(6):820–826. https://doi.org/10.1007/S12221-016-6259-4/METRICS

    Article  CAS  Google Scholar 

  19. Törrönen K, Nikunen K, Kärnä R, Tammi M, Tammi R, Rilla K (2014) Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem Cell Biol 141(1):17–31. https://doi.org/10.1007/S00418-013-1143-4/FIGURES/9

    Article  PubMed  Google Scholar 

  20. Knopf-Marques H et al (2016) Hyaluronic acid and its derivatives in coating and delivery systems: applications in tissue engineering, regenerative medicine and immunomodulation. Adv Healthc Mater 5(22):2841–2855. https://doi.org/10.1002/ADHM.201600316

    Article  CAS  PubMed  Google Scholar 

  21. Xing F et al (2020) Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. Nanotechnol Rev 9(1):1059–1079. https://doi.org/10.1515/NTREV-2020-0084/ASSET/GRAPHIC/J_NTREV-2020-0084_FIG_005.JPG

    Article  CAS  Google Scholar 

  22. Bazmandeh AZ, Mirzaei E, Ghasemi Y, Kouhbanani MAJ (2019) Hyaluronic acid coated electrospun chitosan-based nanofibers prepared by simultaneous stabilizing and coating. Int J Biol Macromol 138:403–411. https://doi.org/10.1016/J.IJBIOMAC.2019.07.107

    Article  CAS  PubMed  Google Scholar 

  23. Castro KC, Campos MGN, Mei LHI (2021) Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspectives. Int J Biol Macromol 173:251–266. https://doi.org/10.1016/J.IJBIOMAC.2021.01.100

    Article  CAS  PubMed  Google Scholar 

  24. Huerta-Angeles G et al (2016) Synthesis of photo-crosslinkable hyaluronan with tailored degree of substitution suitable for production of water resistant nanofibers. Carbohydr Polym 137:255–263. https://doi.org/10.1016/J.CARBPOL.2015.10.077

    Article  CAS  PubMed  Google Scholar 

  25. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8(12):3280–3294. https://doi.org/10.1039/C2SM06463D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deng Y et al (2014) Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture. Carbohydr Polym 101(1):36–39. https://doi.org/10.1016/J.CARBPOL.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  27. Villarreal-Gómez LJ et al (2021) Antimicrobial effect of electrospun nanofibers loaded with silver nanoparticles: influence of Ag incorporation method. J Nanomater. https://doi.org/10.1155/2021/9920755

    Article  Google Scholar 

  28. Umair Wani T et al (2023) Titanium dioxide functionalized multi-walled carbon nanotubes, and silver nanoparticles reinforced polyurethane nanofibers as a novel scaffold for tissue engineering applications. J Ind Eng Chem 121:200–214. https://doi.org/10.1016/J.JIEC.2023.01.024

    Article  CAS  Google Scholar 

  29. Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM (2021) Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents. Int J Mol Sci 22(20):11272. https://doi.org/10.3390/IJMS222011272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phongtongpasuk S, Poadang S (2016) Green synthesis of silver nanoparticles using pomegranate peel extract. Adv Mater Res 1131:227–230. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.1131.227

    Article  Google Scholar 

  31. Abolhassani S, Alipour H, Alizadeh A, Nemati MM, Najafi H, Alavi O (2022) Antibacterial effect of electrospun polyurethane-gelatin loaded with honey and ZnO nanoparticles as potential wound dressing. J Ind Text 51(1 suppl):954S-968S. https://doi.org/10.1177/15280837211069871/ASSET/IMAGES/LARGE/10.1177_15280837211069871-FIG2.JPEG

    Article  CAS  Google Scholar 

  32. Lee SJ et al (2014) Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing. J Nanosci Nanotechnol 14(10):7488–7494. https://doi.org/10.1166/JNN.2014.9581

    Article  CAS  PubMed  Google Scholar 

  33. Abdal-Hay A, Hamdy AS, Khalil KA (2015) Fabrication of durable high performance hybrid nanofiber scaffolds for bone tissue regeneration using a novel, simple in situ deposition approach of polyvinyl alcohol on electrospun nylon 6 nanofibers. Mater Lett 147:25–28. https://doi.org/10.1016/J.MATLET.2015.02.005

    Article  CAS  Google Scholar 

  34. Abdal-Hay A, Salam Hamdy A, Morsi Y, Abdelrazek Khalil K, Hyun Lim J (2014) Novel bone regeneration matrix for next-generation biomaterial using a vertical array of carbonated hydroxyapatite nanoplates coated onto electrospun nylon 6 nanofibers. Mater Lett 137:378–381. https://doi.org/10.1016/J.MATLET.2014.09.034

    Article  CAS  Google Scholar 

  35. Abdal-Hay A, Hussein KH, Casettari L, Khalil KA, Hamdy AS (2016) Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Mater Sci Eng C 60:143–150. https://doi.org/10.1016/J.MSEC.2015.11.024

    Article  CAS  Google Scholar 

  36. Rather AH et al (2023) Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int J Biol Macromol 226:690–705. https://doi.org/10.1016/J.IJBIOMAC.2022.12.048

    Article  CAS  PubMed  Google Scholar 

  37. Cui X et al (2008) Hyaluronan-assisted photoreduction synthesis of silver nanostructures: from nanoparticle to nanoplate. J Phys Chem C 112(29):10730–10734. https://doi.org/10.1021/JP8014029

    Article  CAS  Google Scholar 

  38. Shamaila S et al (2016) Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 5:150–199. https://doi.org/10.1016/J.APMT.2016.09.009

    Article  Google Scholar 

  39. Lamour G et al (2010) Contact angle measurements using a simplified experimental setup. J Chem Educ 87(12):1403–1407. https://doi.org/10.1021/ED100468U

    Article  CAS  Google Scholar 

  40. Hasanzadeh E et al (2019) Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J Biomed Mater Res Part A 107(4):802–814. https://doi.org/10.1002/JBM.A.36596

    Article  CAS  Google Scholar 

  41. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. https://doi.org/10.1016/J.BIOMATERIALS.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  42. Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LS (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: Effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49(5):2324–2337. https://doi.org/10.1007/S10853-013-7931-3/FIGURES/13

    Article  CAS  Google Scholar 

  43. Shamshi Hassan M et al (2013) Bimetallic Zn/Ag doped polyurethane spider net composite nanofibers: a novel multipurpose electrospun mat. Ceram. Int 39(3):2503–2510. https://doi.org/10.1016/J.CERAMINT.2012.09.009

    Article  CAS  Google Scholar 

  44. Samie M, Khan AF, Hardy JG, Yameen MA (2022) Electrospun antibacterial composites for cartilage tissue engineering. Macromol Biosci 22(9):2200219. https://doi.org/10.1002/MABI.202200219

    Article  CAS  Google Scholar 

  45. He X et al (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: Scaffold for tissue engineering. Biomacromol 15(2):618–627. https://doi.org/10.1021/BM401656A/SUPPL_FILE/BM401656A_SI_001.PDF

    Article  CAS  Google Scholar 

  46. Koosha M, Raoufi M, Moravvej H (2019) One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf B Biointerfaces 179:270–279. https://doi.org/10.1016/J.COLSURFB.2019.03.054

    Article  CAS  PubMed  Google Scholar 

  47. Sheikh FA, Zargar MA, Tamboli AH, Kim H (2016) A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: by in situ hydrothermal approach. Appl Surf Sci 385:417–425. https://doi.org/10.1016/J.APSUSC.2016.05.111

    Article  CAS  Google Scholar 

  48. Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C (2012) Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 5(1):178–183. https://doi.org/10.1039/C2NR32145A

    Article  PubMed  Google Scholar 

  49. Hu Y et al (2017) Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf B Biointerfaces 157:93–100. https://doi.org/10.1016/J.COLSURFB.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  50. Zhuo F, Abourehab MAS, Hussain Z (2018) Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym 197:478–489. https://doi.org/10.1016/J.CARBPOL.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  51. Hafezi M, Safarian S, Khorasani MT, Abu Osman NA (2016) Polyurethane/58S bioglass nanofibers: synthesis, characterization, and in vitro evaluation. RSC Adv 6(42):35815–35824. https://doi.org/10.1039/C5RA24786A

    Article  CAS  Google Scholar 

  52. Choi Y, Nirmala R, Lee JY, Rahman M, Hong ST, Kim HY (2013) Antibacterial ciprofloxacin HCl incorporated polyurethane composite nanofibers via electrospinning for biomedical applications. Ceram Int 39(5):4937–4944. https://doi.org/10.1016/J.CERAMINT.2012.11.088

    Article  CAS  Google Scholar 

  53. Unnithan AR et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90(4):1786–1793. https://doi.org/10.1016/J.CARBPOL.2012.07.071

    Article  CAS  PubMed  Google Scholar 

  54. Yan S et al (2019) Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels. Compos Part B Eng 176:107204. https://doi.org/10.1016/J.COMPOSITESB.2019.107204

    Article  CAS  Google Scholar 

  55. Pan S-F, Ke X-X, Wang T-Y, Liu Q, Zhong L-B, Zheng Y-M (2018) Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.8b04893

    Article  Google Scholar 

  56. Cakic SM, Stamenkovic JV, Djordjevic DM, Ristic IS (2009) Synthesis and degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selective catalysts. Polym Degrad Stab 94(11):2015–2022. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2009.07.015

    Article  CAS  Google Scholar 

  57. Nirmala R, Kalpana D, Navamathavan R, Lee YS, Kim HY (2013) Preparation and characterizations of silver incorporated polyurethane composite nanofibers via electrospinning for biomedical applications. J Nanosci Nanotechnol 13(7):4686–4693. https://doi.org/10.1166/JNN.2013.7192

    Article  CAS  PubMed  Google Scholar 

  58. Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI (2021) Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 168:175–186. https://doi.org/10.1016/J.IJBIOMAC.2020.12.031

    Article  CAS  PubMed  Google Scholar 

  59. Li Q, Li M, Zhu P, Wei S (2012) In vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template. J Mater Chem 22(38):20257–20265. https://doi.org/10.1039/C2JM33624C

    Article  CAS  Google Scholar 

  60. Kalwar K, Hu L, Li DL, Shan D (2018) AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym Adv Technol 29(1):394–400. https://doi.org/10.1002/PAT.4127

    Article  CAS  Google Scholar 

  61. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/CSHPERSPECT.A000414

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pazos-Ortiz E et al (2017) Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. https://doi.org/10.1155/2017/4752314

    Article  Google Scholar 

  63. Sofi H, Akram T, Tamboli A (2021) journal of, and undefined 2019, Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Elsevier, Accessed Jan, 26 2021 https://www.sciencedirect.com/science/article/pii/S0378517319306350

  64. Lu B et al (2017) In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity. Carbohydr Polym 173:556–565. https://doi.org/10.1016/J.CARBPOL.2017.06.035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB) research grants (CRG/2020/000113). Anjum Hamid is grateful for Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AHR and FAS wrote the manuscript. RSK and TUW did the editing. MR and AQ did the characterization. SR supervised the work. HM, AHJ and SM did the analysis and helped to review the manuscript.

Corresponding author

Correspondence to Faheem A. Sheikh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, A.H., Khan, R.S., Wani, T.U. et al. Hydrothermal Modification of Polyurethane Fibers Using Hyaluronic Acid and Silver Nanoparticles for Wound Healing. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03146-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03146-9

Keywords

Navigation