Skip to main content

Advertisement

Log in

Fabrication and Characterization of Poly (Lactic acid)/Propylparaben Composite for Active Food Packaging Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Sustainable poly(lactic acid) (PLA)/propylparaben (PPB) composite based films were fabricated via solution casting approach. The assessment of PLA/PPB composite films in terms of active food packaging characteristics like thermal, mechanical, UV–Vis, oxygen barrier, anti-bacterial as well as anti-oxidant effect is carried out. The PLA/PPB-5 composite film resulted in three-fold (23%) increase of elongation-at-break while maintaining a tensile strength (42 MPa) in comparison with PLA film. Consequently, the PLA/PPB-5 composite film displayed a 70% UV–B blockage and reduced the oxygen transmission rate by 52% as compared to PLA film. Further, the PLA/PPB-5 composite film exhibited significant improvement (52%) in the radical scavenging activity which can be really helpful to keep the food products fresh for longer periods. The PLA/PPB filler showed good antibacterial activity against food-borne bacteria [Staphylococcus aureus and Escherichia coli]. The fabricated PLA/PPB composite films have shown desirable active food packaging characteristics and therefore may be suitable for food packaging applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jia-hui Wu Teng-gen, Hu H, Wang Min-hua, Zong H, Wu, Wen P (2022) Electrospinning of PLA nanofibers: recent advances and its potential application for Food Packaging. J Agric Food Chem 70(27):8207–8221. https://doi.org/10.1021/acs.jafc.2c02611

    Article  CAS  PubMed  Google Scholar 

  2. Halimatul MJ, Sapuan SM, Jawaid M, Ishak MR, Ilyas RA (2019) Effect of sago starch and plasticizer content on the properties of thermoplastic films: mechanical testing and cyclic soaking-drying. Polimery 64:32–41. https://doi.org/10.14314/polimery.2019.6.5

    Article  CAS  Google Scholar 

  3. Dorgan JR, Lehermeier HJ, Palade L-I, Cicero J (2001) Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol Symp 175:55–66

    Article  CAS  Google Scholar 

  4. Daniela C, Gonzalo B, Carolina V, Nicolás B, Giannina AT, María PG, Francisco R, Adrián R, María JG, Luis C, Mauricio Y, Julio R, Alejandra T (2021) Effect of supercritical incorporation of cinnamaldehyde on physical-chemical properties, disintegration and toxicity studies of PLA/lignin nanocomposites. Int J Biol Macromol 167:255–266

    Article  Google Scholar 

  5. Xipo Z, Jinchao L, Juncheng L, Xinyu L, Weiyi Z, Shaoxian P (2022) Strategies and techniques for improving heat resistance and mechanical performances of poly (lactic acid) (PLA) biodegradable materials. Int J Biol Macromol 218:115–134

    Article  Google Scholar 

  6. Lawal U, Ravi Babu V (2021) Bioplastics: an introduction to the role of Eco-friendly Alternative Plastics in sustainable packaging. In: Sapuan SM, Ilyas RA (eds) Bio‐based Packaging: material, Environmental and Economic aspects. John Wiley & Sons, Inc., New Jersey, pp 319–334

    Chapter  Google Scholar 

  7. Mulla MZ, Rahman MRT, Marcos B, Tiwari B, Pathania S (2021) Poly lactic acid (PLA) nanocomposites: Effect of Inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules 26:1967. https://doi.org/10.3390/molecules26071967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panitee Suwanamornlert N, Kerddonfag A, Sane W, Chinsirikul W, Zhou V, Chonhenchob (2020) Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag Shelf Life 25:100515. https://doi.org/10.1016/j.fpsl.2020.100515

    Article  Google Scholar 

  9. Santos X, Álvarez M, Videira-Quintela D, Mediero A, Rodríguez J, Guillén F, Pozuelo J, Martín O (2022) Antibacterial capability of MXene (Ti3C2Tx) to produce PLA active contact surfaces for Food Packaging Applications. Membranes 12:1146. https://doi.org/10.3390/membranes12111146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guillen DV-QF, Martin O, Cumbal L, Montalvo G (2022) Antibacterial and antioxidant triple-side filler composed of fumed silica, iron, and tea polyphenols for active food packaging. Food Control 138:0956–7135. https://doi.org/10.1016/j.foodcont.2022.109036

    Article  CAS  Google Scholar 

  11. Value-Added Biopolymer Nanocomposites from Waste Eggshell-Based CaCO3 Nanoparticles as Fillers Tarig, Hassan A, Rangari VK, Jeelani S (2014) ACS Sustain Chem Eng 2(4):706–717. https://doi.org/10.1021/sc400405v

    Article  CAS  Google Scholar 

  12. Udangshree Boro A, Priyadarsini VS, Moholkar (2022) Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications. Int J Biol Macromol 216:927–939. https://doi.org/10.1016/j.ijbiomac.2022.07.209

    Article  CAS  PubMed  Google Scholar 

  13. Mohan Subbuvel P, Kavan (2022) Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications. Int J Biol Macromol 194:470–483. https://doi.org/10.1016/j.ijbiomac.2021.11.090

    Article  CAS  PubMed  Google Scholar 

  14. Llana-Ruiz-Cabello M, Pichardo S, Bermúdez JM, Baños A, Núñez C, Guillamón E, Aucejo S, Cameán AM (2016) Development of PLA films containing oregano essential oil (Origanum vulgare L. Virens) intended for use in food packaging. Food Addit Contaminants: Part A 33(8):1374–1386. https://doi.org/10.1080/19440049.2016.1204666

    Article  CAS  Google Scholar 

  15. Cvek M, Paul UC, Athanassiou (2022) Biodegradable Films of PLA/PPC and curcumin as packaging materials and smart Indicators of food spoilage. ACS Appl Mater Interfaces 14(12):14654–14667. https://doi.org/10.1021/acsami.2c02181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lincho J, Martins RC, Gomes J (2021) Paraben Compounds—Part I: an overview of their characteristics, detection, and impacts. Appl Sci 11:2307. https://doi.org/10.3390/app11052307

    Article  CAS  Google Scholar 

  17. Jinbo O, Jian C, Limin Z, Zhirong L, Chuntao Z (2020) Solubility Measurement, modeling, and dissolution thermodynamics of Propylparaben in 12 pure solvents. J Chem Eng Data 65:9, 4725–4734

    Article  Google Scholar 

  18. Jérôme B, Anne D-R, Jean-Marie P (2005) Propyl paraben induces potassium efflux in Escherichia coli. J Antimicrob Chemother 55:6, 1013–1015. https://doi.org/10.1093/jac/dki110

    Article  CAS  Google Scholar 

  19. Chung D, Chikindas ML, Yam KL (2001) Inhibition of Saccharomyces cerevisiae by slow release of propyl paraben from a polymer coating. J Food Prot 64(9):1420–1424

    Article  CAS  PubMed  Google Scholar 

  20. Swarup R, Jong-Whan R (2020) Preparation of bioactive functional poly (lactic acid)/curcumin composite film for food packaging application. Int J Biol Macromol 162:1780–1789

    Article  Google Scholar 

  21. Mei Z, Ping W, Hongyan S, Zuankai W (2014) Superhydrophobic Surface with Hierarchical Architecture and Bimetallic Composition for enhanced antibacterial activity. ACS Appl Mater Interfaces 6:22108–22115

    Article  Google Scholar 

  22. Evie LP, Uttam CP, Thi NT, Giulia S, Luca C, Sergio M, Richard D, Athanassia A (2019) Sustainable active food packaging from Poly(lactic acid) and Cocoa Bean shells. ACS Appl Mater Interfaces 11:34

    Google Scholar 

  23. Valapa RB, Pugazhenthi G, Katiyar V (2014) Fabrication and characterization of sucrose palmitate reinforced poly (lactic acid) bionanocomposite films. J Appl Polym Sci 132:41320. https://doi.org/10.1002/app.41320

    Article  CAS  Google Scholar 

  24. Khalili P, Liu X, Zhao Z, Blinzler B (2019) Fully biodegradable composites: thermal, fammability, moisture absorption and mechanical properties of natural fbre-reinforced composites with nano-hydroxyapatite. Materials 12(7):1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. JCPDS file no. 00-051-1982

  26. Laura A, Patrizia C, Maria BC, Maria CR, Massimo G, Andrea L (2017) Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur Polym J 93:822–832

    Article  Google Scholar 

  27. Solanki S, Siva BP, Rajesh N, Suthan T (2017) Growth and characterization of propyl 4-hydroxybenzoate single crystal by vertical Bridgman technique. Mater Res Innov 22:144–146. https://doi.org/10.1080/14328917.2016.1266428

    Article  CAS  Google Scholar 

  28. Pracella M, Haque MMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulosenanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728

    Article  CAS  Google Scholar 

  29. Rocca-Smith JR, Lagorce-Tachon A, Iaconelli C, Bellat JP, Marcuzzo E, Sensidoni A, Piasente F, Debeaufort F, Karbowiak T (2017) How high pressure CO 2 impacts PLA film properties. Expr Polym Lett 11:320–333

    Article  CAS  Google Scholar 

  30. Muller J, González C, Chiralt A (2017) Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur Polym J 95:56–70. https://doi.org/10.1016/j.eurpolymj.2017.07.019

    Article  CAS  Google Scholar 

  31. Yu F, Fei X, He Y, Li H (2021) Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. Int J Biol Macromol 186:770–779. https://doi.org/10.1016/j.ijbiomac.2021.07.09

    Article  CAS  PubMed  Google Scholar 

  32. Cavallo E, He X, Luzi F, Dominici F, Cerrutti P, Bernal C, Foresti ML, Torre L, Puglia D, Protective UV (2020) Antioxidant, Antibacterial and Compostable Polylactic Acid composites containing pristine and chemically modified lignin nanoparticles. Molecules 26(1):126. https://doi.org/10.3390/molecules26010126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El-hadi AM (2017) Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci Rep 7:46767. https://doi.org/10.1038/srep46767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang W, Weng Y, Puglia D, Qi G, Dong W, Kenny JM, Ma P (2019) Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.12.08

    Article  PubMed  PubMed Central  Google Scholar 

  35. Long-Feng W, Jong-Whan R (2016) Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT 74:338–334

    Article  Google Scholar 

  36. Roy S, Rhim JW (2020) Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocoll 98:105302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thanks Council of Scientific and Industrial Research (CSIR), India and The World Academy of Science (TWAS), Italy for post graduate fellowship (Grant No: 22/FF/CSIR-TWAS/2018) to carryout doctoral research at CSIR-CECRI, India. The corresponding author “Ravi Babu Valapa” sincerely thanks SERB, DST for financial support under EMEQ scheme (Grant: no: EEQ/2019/000451) and CSIR-HQ for funding under “AEISS theme” (Grant no: MLP 0318). Sravanthi Loganathan sincerely thanks Department of Science and Technology, Govt. of India for funding this research under DST INSPIRE FACULTY Scheme (Grant no: DST/INSPIRE/04/2017/000704). All the authors acknowledge Central Instrumentation Facility (CIF) at CSIR-CECRI for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

UL: experiments, characterization, data collection, formal analysis, validation, and preparation of original draft. VR: characterization, analysis, writeup—review and editing. AG: characterization, analysis, writeup—review and editing. SL: resources and writeup—review and editing. RBV: Conceptualization, supervision, resources, writeup—review and editing and funding acquisition.

Corresponding author

Correspondence to Ravi Babu Valapa.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawal, U., Robert, V., Gopi, A. et al. Fabrication and Characterization of Poly (Lactic acid)/Propylparaben Composite for Active Food Packaging Application. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03145-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03145-w

Keywords

Navigation