Skip to main content

Advertisement

Log in

Bilayer Wound Dressing Composed of Allograft Collagen-Glycosaminoglycan and Silicone: Synthesis, Characterization and Biological Behavior

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Restoring the physiological function of the damaged skin is crucial due to its undeniable protective role as well as its aesthetic aspects. Herein, a novel bilayer freeze-dried scaffold comprised of allograft collagen and glycosaminoglycan (Col-GAG; the biocompatible inner layer) adhered to silicone (mechanically reinforcing component) utilizing gelatin as the bio-glue was prepared to benefit from each origin (human-derived and synthetic) advantages. The structural characterizations of the scaffolds were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), tensile stress test, water uptake behavior, and Water Vapor Permeability (WVP). Also, the scaffolds' cytocompatibility was assessed by culturing human dermal fibroblasts (HDF) on the samples. Furthermore, the in vivo functionality was performed by implanting the scaffolds in male mice and observing the cellularization as well as neovascularization by Hematoxylin and Eosin (H&E) staining and CD31 marker. Based on the results, the potentially amorphous scaffolds were three-dimensional (3D) porous with randomly oriented interconnected pores suitable for cellular ingrowth. The application of the silicone layer resulted in resisting the extra osmotic pressure of water molecules by decreasing the water uptake ratio to 59.2 ± 0.33%, maintaining the WVP at an approximate rate of 0.1–10 mg/cm2hr, and boosting the tensile strength to 1.66 ± 0.12 MPa. The grafts provided an optimum environment for cell attachment and presented cellular viability upper than 70% after 72h. In vivo assessment exhibited improved perivascular localization, with the cell migration rate approximating 64%. The outcomes indicated that the achieved scaffold holds promise as an ideal wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Nguyen HM, Le TTN, Nguyen AT, Le HNT, Pham TT (2023) Biomedical materials for wound dressing: recent advances and applications. RSC Adv 13:5509–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tottoli EM, Benedetti L, Chiesa E, Pisani S, Bruni G, Genta I, Conti B, Ceccarelli G, Dorati R (2023) Electrospun naringin-loaded fibers for preventing scar formation during wound healing. Pharmaceutics 15:747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang J, Li X, Li H, Lv X, Xu Y, Hu Y, Song Y, Shao J, Li S, Yang D (2023) Recent progress in nanozymes for the treatment of diabetic wound. J Mater Chem B 11:6746–6761

    Article  CAS  PubMed  Google Scholar 

  4. Flohr CRH (2021) Putting the burden of skin diseases on the global map. Blackwell, UK

    Book  Google Scholar 

  5. Zhang M, Xu S, Du C, Wang R, Han C, Che Y, Feng W, Wang C, Gao S, Zhao W (2023) Novel PLCL nanofibrous/keratin hydrogel bilayer wound dressing for skin wound repair. Colloids Surf B 222:113119

    Article  CAS  Google Scholar 

  6. Holloway S, Harding KG (2022) Wound dressings. Surg Infect (Larchmt) 40:25–32

    Google Scholar 

  7. Rezaei H, Shahrezaee M, Jalali Monfared M, Ghorbani F, Zamanian A, Sahebalzamani M (2021) Mussel-inspired polydopamine induced the osteoinductivity to ice-templating PLGA–gelatin matrix for bone tissue engineering application. Biotechnol Appl Biochem 68:185–196

    Article  CAS  PubMed  Google Scholar 

  8. Dhivya S, Padma VV, Santhini E (2015) Wound dressings–a review. Biomedicine 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hopf HW, Humphrey LM, Puzziferri N, West JM, Attinger CE, Hunt TK (2001) Adjuncts to preparing wounds for closure: hyperbaric oxygen, growth factors, skin substitutes, negative pressure wound therapy (vacuum-assisted closure). Foot Ankle Clin 6:661–682

    Article  CAS  PubMed  Google Scholar 

  10. Kelangi SS, Theocharidis G, Veves A, Austen WG, Sheridan R, Goverman J, Bei M (2020) On skin substitutes for wound healing: current products, limitations, and future perspectives. Technology 8:8–14

    Article  Google Scholar 

  11. Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18:789

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31:1801651

    Article  Google Scholar 

  13. Cazzell S, Moyer PM, Samsell B, Dorsch K, McLean J, Moore MA (2019) A prospective, multicenter, single-arm clinical trial for treatment of complex diabetic foot ulcers with deep exposure using acellular dermal matrix. Adv Skin Wound Care 32:409

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carvalho-Júnior JD, Zanata F, Aloise AC, Ferreira LM (2021) Acellular dermal matrix in skin wound healing in rabbits-histological and histomorphometric analyses. Clinics 76:e2066

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tognetti L, Pianigiani E, Ierardi F, Lorenzini G, Casella D, Liso FG, De Pascalis A, Cinotti E, Rubegni P (2021) The use of human acellular dermal matrices in advanced wound healing and surgical procedures: state of the art. Dermatol Ther 34:e14987

    Article  PubMed  Google Scholar 

  16. Bondioli E, Purpura V, Orlandi C, Carboni A, Minghetti P, Cenacchi G, De Luca G, Capirossi D, Nigrisoli E, Melandri, D (2019) The use of an acellular matrix derived from human dermis for the treatment of full-thickness skin wounds. Cell Tissue Banking 20:183–192

    Article  CAS  PubMed  Google Scholar 

  17. Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, South Africa, Pretoria

    Google Scholar 

  18. Solarte David VA, Güiza-Argüello VR, Arango-RodríguezSossaBecerra-Bayona MLCLSM (2022) Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol 10:821852

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huimin X, Xin C, Xuanzhe L, Gen W, Yu Y (2023) Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 19:100589

    Article  Google Scholar 

  20. Bahrami S, Baheiraei N, Shahrezaee M (2021) Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci Rep 11:16783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu R, Luo G, Xia H, He W, Zhao J, Liu B, Tan J, Zhou J, Liu D, Wang Y (2015) Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40:1–11

    Article  PubMed  Google Scholar 

  22. Barrett S, King B, Welch D, Scales A, Nockels S (2022) A next generation silicone foam wound dressing. A 51-wound clinical evaluation. Wound Pract Res 30:228

    Google Scholar 

  23. Tottoli EM, Dorati RA-O, Genta IA-O, Chiesa E, Pisani S, Conti BA-O (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. John E, Kemnitzer EP. Process for preparing tissue regeneration matrix. Integra Lifesciences Corp, United States, US20160143726A1. (2015)

  25. Fonseca DF, Carvalho JP, Bastos V, Oliveira H, Moreirinha C, Almeida A, SilvestreVilelaFreire AJCCS (2020) Antibacterial multi-layered nanocellulose-based patches loaded with dexpanthenol for wound healing applications. Nanomaterials 10:2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao W, Duan X, Xie F, Zheng D, Yang P, Wang X, Hu Z (2023) 3D-bioprinted double-crosslinked angiogenic alginate/chondroitin sulfate patch for diabetic wound healing. Int J Biol Macromol 236:123952

    Article  CAS  PubMed  Google Scholar 

  27. Sousa MP, Neto AI, Correia TR, Miguel SP, Matsusaki M, Correia Mano IJJF (2018) Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomater Sci 6:1962–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang C, Ding X, Yang C, Shang L, Zhao Y (2023) Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem Eng J 456:140886

    Article  CAS  Google Scholar 

  29. Kataria K, Gupta A, Rath G, Mathur R, Dhakate S (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 469:102–110

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Ma L, Zhou J, Mao Z, Gao C (2005) Collagen/chitosan-silicone membrane bilayer scaffold as a dermal equivalent. Polym Adv Technol 16:789–794

    Article  CAS  Google Scholar 

  31. Chang Y, Cheah PC, Seow (2000) Plasticizing—antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J Food Sci 65:445–451

    Article  CAS  Google Scholar 

  32. Anggorowati N, Kurniasari CR, Damayanti K, Cahyanti T, Widodo I, Ghozali A, Romi MM, SariN DCR, Arfian, (2017) Histochemical and immunohistochemical study of α-SMA, collagen, and PCNA in epithelial ovarian neoplasm. Asian Pacific journal of cancer prevention: APJCP 18:667

    PubMed  PubMed Central  Google Scholar 

  33. Petrie K, Cox CT, Becker BC, MacKay BJ (2022) Clinical applications of acellular dermal matrices: a review. Scars Burns Healing. https://doi.org/10.1177/20595131211038313

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kirsner RS, Bohn G, Driver VR, Mills JL Sr, NanneyWilliamsWu LBMLSC (2015) Human acellular dermal wound matrix: evidence and experience. Int Wound J 12:646–654

    Article  PubMed  Google Scholar 

  35. Ghettia M, Bondioli E, Purpura V, Cenacchi G, Ruscelli PD, Melandri (2017) Decellularized human dermal matrix produced by a skin bank. Ann Ital Chir 88:443–448

    Google Scholar 

  36. Bondioli E, Fini M, Veronesi F, Giavaresi G, Tschon M, Cenacchi G, Cerasoli S, GiardinoMelandri RD (2014) Development and evaluation of a decellularized membrane from human dermis. J Tissue Eng Regen Med 8:325–336

    Article  CAS  PubMed  Google Scholar 

  37. Wittaya-areekul SCP (2006) Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings. Int J Pharm 313:123–128

    Article  CAS  PubMed  Google Scholar 

  38. Gao Y, Wang J, Liang X, Yan Z, LiuCai YY (2014) Investigation on permeation properties of liquids into HTV silicone rubber materials. IEEE Trans Dielectr Electr Insul 21:2428–2437

    Article  CAS  Google Scholar 

  39. Sizeland KH, Hofman KA, Hallett IC, Martin DE, Potgieter J, Kirby NM, Hawley A, Mudie ST, RyanHaverkampCumming TMRGMH (2018) Nanostructure of electrospun collagen: Do electrospun collagen fibers form native structures? Materialia 3:90–96

    Article  CAS  Google Scholar 

  40. David G, Cristea M, Balhui C, Timpu D, DorofteiSimionescu FBC (2012) Effect of cross-linking methods on structure and properties of poly (ε-caprolactone) stabilized hydrogels containing biopolymers. Biomacromol 13:2263–2272

    Article  CAS  Google Scholar 

  41. Chang HI, Wang Y (2011) In: regenerative medicine and tissue engineering-cells and biomaterials. InTechOpen, London

    Google Scholar 

  42. Haidar NB, Marais S, Dé E, Schaumann A, Barreau M, FeuilloleyDuncan MGAC (2020) Chronic wound healing: a specific antibiofilm protein-asymmetric release system. Mater Sci Eng, C 106:110130

    Article  Google Scholar 

  43. Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, LazzeriS A, Danti, (2020) Bio-based electrospun fibers for wound healing. J Funct Biomater 11:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zulkiflee I, Masri S, Zawani M, Salleh A, Amirrah IN, Wee MFMR, YusopFauzi SMMB (2022) Silicon-based scaffold for wound healing skin regeneration applications: a concise review. Polymers 14:4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pires ALRÂMM (2015) Improvement of the mechanical properties of chitosan-alginate wound dressings containing silver through the addition of a biocompatible silicone rubber. J Appl Polym Sci 132:41686

    Article  Google Scholar 

  46. Ratner BD, Hoffman AS, SchoenLemons FJJE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Netherlands

    Google Scholar 

  47. Farshi P, Salarian R, Rabiee M, Alizadeh S, Gholipourmalekabadi M, AhmadiRabiee SN (2022) Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications. Polym Eng Sci 62:2741–2749

    Article  CAS  Google Scholar 

  48. Eskandarinia A, Kefayat A, Agheb M, Rafienia M, Amini Baghbadorani M, Navid S, Ebrahimpour K, Khodabakhshi D, Ghahremani F (2020) A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci Rep 10:3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ren P, Zhang H, Dai Z, Ren F, Wu Y, Hou R, Zhu YJ, Fu (2019) Stiff micelle-crosslinked hyaluronate hydrogels with low swelling for potential cartilage repair. J Mater Chem B 7:5490–5501

    Article  CAS  PubMed  Google Scholar 

  50. Nuutila KE (2021) Eriksson moist wound healing with commonly available dressings. Adv Wound Care 10:685–698

    Article  Google Scholar 

  51. Zhu B, Li W, Chi N, Lewis RV, Osamor J, Wang R (2017) Optimization of glutaraldehyde vapor treatment for electrospun collagen/silk tissue engineering scaffolds. ASC Omega 2:2439–2450

    Article  CAS  Google Scholar 

  52. Lan G, Zhu S, Chen D, Zhang H, ZouZeng LY (2021) Highly adhesive antibacterial bioactive composite hydrogels with controllable flexibility and swelling as wound dressing for full-thickness skin healing. Front Bioeng Biotechnol 2:785302

    Article  Google Scholar 

  53. Deutsch C, Edwards DS, Myers (2017) Wound dressings. Br J Hosp Med 78:C103–C109

    Article  CAS  Google Scholar 

  54. Wiegand C, Tittelbach J, Hipler UC, Elsner P (2015) Clinical efficacy of dressings for treatment of heavily exuding chronic wounds. Chronic Wound Care Manag Res 10:101–111

    Article  Google Scholar 

  55. Akrami-Hasan-Kohal M, Tayebi LM, Ghorbani (2020) Curcumin-loaded naturally-based nanofibers as active wound dressing mats: Morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem 44:10343–10351

    Article  CAS  Google Scholar 

  56. Xu R, Xia H, He W, Li Z, Zhao J, Liu B, Wang Y, Lei Q, KongBai YY (2016) Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep 6:24596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yannas IV, Burke JF (1985) Method of using a fibrous lattice. Massachusetts Institute of Technology, United States, US4505266A

  58. Gao Z, Su C, Wang C, Zhang Y, Wang C, YanHou HG (2021) Antibacterial and hemostatic bilayered electrospun nanofibrous wound dressings based on quaternized silicone and quaternized chitosan for wound healing. Eur Polymer J 159:110733

    Article  CAS  Google Scholar 

  59. López-García J, Lehocký M, Humpolíček P, Sáha P (2014) HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater 5:43–57

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang J, Liang G, Xiang T, Situ W (2021) Effect of crosslinking processing on the chemical structure and biocompatibility of a chitosan-based hydrogel. Food Chem 354:129476

    Article  CAS  PubMed  Google Scholar 

  61. Sodhi HAP (2020) Glycosaminoglycans in tissue engineering: a review. Biomolecules 11:29

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernandez-Perez J, Moroni L (2021) Glycosaminoglycans: from vascular physiology to tissue engineering applications. Front Chem 9:680836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rouet V, Hamma-Kourbali Y, Petit E, Panagopoulou P, Katsoris P, Barritault D, Caruelle J-P, Courty J (2005) A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J Biol Chem 280:32792–32800

    Article  CAS  PubMed  Google Scholar 

  64. Nita M, Pliszczyński J, Kowalewski C, Woźniak K, Eljaszewicz A, Moniuszko M, Kamiński A, Śladowski D, Zimek Z, Majewski S (2020) New treatment of wound healing with allogenic acellular human skin graft: preclinical assessment and in vitro study. Transpl Proc 52:2204–2207

    Article  CAS  Google Scholar 

  65. Chen K, Pan H, Ji D, Li Y, Duan H, Pan W (2021) Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. Mater Sci Eng, C 127:112245

    Article  CAS  Google Scholar 

  66. Lee DW, Lee MC, RohLee HWJ (2014) Multilayered implantation using acellular dermal matrix into nude mice. J Mater Sci - Mater Med 25:2669–2676

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported financially by the Iran National Science Foundation (INSF) under Grant Number 4003142, with partial support from the Iranian Tissue Product Company.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in preparing the bilayer wound dressing. FF and HM performed the characterizations and ST analyzed the data and prepared the outcomes. ST and FF wrote and revised the main manuscript text (equally as the first author) with partial contribution of HM. NB, RS, and AT reviewed the manuscript. Also, NB monitored the whole process.

Corresponding authors

Correspondence to Nafiseh Baheiraei or Amirhossein Tavakoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animal investigations were approved by the Ethics Committee of Tarbiat Modares University, Iran (IR.MODARES.AEC.1402.013).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzandeh, F., Tabatabaee, S., Baheiraei, N. et al. Bilayer Wound Dressing Composed of Allograft Collagen-Glycosaminoglycan and Silicone: Synthesis, Characterization and Biological Behavior. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03095-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03095-3

Keywords

Navigation