Skip to main content
Log in

Fabrication and Investigation of Oxidized-β-Cyclodextrin Nanoparticle as a Novel Class pH Responsive Drug Delivery Vehicle

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Oxidized β-cyclodextrin (O-β-CD) nanoparticle was synthesized using oxidation process and Amoxicillin trihydrate (AMOX) model drug was integrated both via Schiff base reaction (C=N bond) as well as inclusion into cavity of O-β-CD to evaluate pH-responsive drug release behavior. The drug loaded nanocarrier (AM-O-β-CD) was characterized and results showed this formation, encapsulation and morphological change with average particle size (398 ± 8.51 nm), negative zeta potential values (− 25.4 ± 1.54) and high entrapment efficiency (86.1%). The in vitro release behavior of AM-O-β-CD was evaluated in physiological buffer conditions (0.1 M PBS, pH 5.2, at 37 °C). It was found that drug-loaded AM-O-β-CD showed sustain, prolonged much higher drug release profile (94.72%) in low pH than that of the pure drug (24.18%) in the same acidic medium. Release kinetics of drug loaded AM-O-β-CD was determined according to well-known mathematical models, revealing that in vitro release profile could be best expressed by Higuchi kinetic model as release data showed the highest linearity (R2 = 0.967) so that drug release takes place due to both dissolution and diffusion as it is expected. As a result, it has been proven that the nanostructure has the potential to be pH sensitive drug carrier, especially for drugs containing NH2 side groups in acidic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gim S, Zhu Y, Seeberger PH, Delbianco M (2019) Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1558. https://doi.org/10.1002/wnan.1558

    Article  PubMed  Google Scholar 

  2. Di X, Liang X, Shen C et al (2022) Carbohydrates used in polymeric systems for drug delivery: from structures to applications. Pharmaceutics 14:739. https://doi.org/10.3390/pharmaceutics14040739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar K, Sheetu SA et al (2022) Natural carbohydrates-based nanoparticles: a review of pharmaceutical applications. Nat Prod J. https://doi.org/10.2174/2210315512666220826145928

    Article  Google Scholar 

  4. Zhang C-W, Zhang J-G, Yang X et al (2022) Carbohydrates based stimulus responsive nanocarriers for cancer-targeted chemotherapy: a review of current practices. Expert Opin Drug Deliv 19:623–640. https://doi.org/10.1080/17425247.2022.2081320

    Article  CAS  PubMed  Google Scholar 

  5. Westin CB, Nagahara MHT, Decarli MC et al (2020) Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J 129:109637. https://doi.org/10.1016/j.eurpolymj.2020.109637

    Article  CAS  Google Scholar 

  6. Alibolandi M, Mohammadi M, Teimouri R (2022) Carbohydrate-based materials in tissue engineering applications. Nanoengineering of Biomaterials. Wiley, pp 1–31

    Google Scholar 

  7. Khalid A, Asim-Ur-Rehman AN et al (2021) Polysaccharide chemistry in drug delivery, endocrinology, and vaccines. Chemistry 27:8437–8451. https://doi.org/10.1002/chem.202100204

    Article  CAS  PubMed  Google Scholar 

  8. Păduraru DN, Niculescu A-G, Bolocan A et al (2022) An updated overview of cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics 14:1748. https://doi.org/10.3390/pharmaceutics14081748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santos AC, Costa D, Ferreira L et al (2021) Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv Transl Res 11:49–71. https://doi.org/10.1007/s13346-020-00778-5

    Article  CAS  PubMed  Google Scholar 

  10. Poulson BG, Alsulami QA, Sharfalddin A et al (2021) Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides 3:1–31. https://doi.org/10.3390/polysaccharides3010001

    Article  CAS  Google Scholar 

  11. Zhang Y-M, Liu Y-H, Liu Y (2020) Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater 32:e1806158. https://doi.org/10.1002/adma.201806158

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Yu P, Sollogoub M, Zhang Y (2020) Functionalized cyclodextrins and their applications in biodelivery. Handbook of Macrocyclic Supramolecular Assembly. Springer, Singapore, pp 385–423

    Chapter  Google Scholar 

  13. Yamamura H, Sugiyama Y, Murata K et al (2014) Synthesis of antimicrobial cyclodextrins bearing polyarylamino and polyalkylamino groups via click chemistry for bacterial membrane disruption. Chem Commun 50:5444–5446. https://doi.org/10.1039/c3cc49543d

    Article  CAS  Google Scholar 

  14. Tian B, Hua S, Liu J (2020) Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: a review. Carbohydr Polym 232:115805. https://doi.org/10.1016/j.carbpol.2019.115805

    Article  CAS  PubMed  Google Scholar 

  15. Yamamura H (2017) Chemical modification of cyclodextrin and amylose by click reaction and its application to the synthesis of poly-alkylamine-modified antibacterial sugars. Chem Pharm Bull 65:312–317. https://doi.org/10.1248/cpb.c16-00739

    Article  CAS  Google Scholar 

  16. Matencio A, Caldera F, Cecone C et al (2020) Cyclic oligosaccharides as active drugs, an updated review. Pharmaceuticals 13:281. https://doi.org/10.3390/ph13100281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin H, Yang L, Ahonen MJR, Schoenfisch MH (2018) Nitric oxide-releasing cyclodextrins. J Am Chem Soc 140:14178–14184. https://doi.org/10.1021/jacs.8b07661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren H, Lyu Y, Li X et al (2018) Preparation and characterization of dialdehyde β-cyclodextrin with broad-spectrum antibacterial activity. Food Res Int 111:237–243. https://doi.org/10.1016/j.foodres.2018.05.039

    Article  CAS  PubMed  Google Scholar 

  19. Mirzaeei S, Mansurian M, Asare-Addo K, Nokhodchi A (2021) Metronidazole- and amoxicillin-loaded PLGA and PCL nanofibers as potential drug delivery systems for the treatment of periodontitis: in vitro and in vivo evaluations. Biomedicines 9:975. https://doi.org/10.3390/biomedicines9080975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taghzouti OK, El Mabrouk K, Bricha M, Nouneh K (2019) Controlled adsorption and release of amoxicillin in GO/HA composite materials. SN Appl Sci 1:226. https://doi.org/10.1007/s42452-019-0240-y

    Article  CAS  Google Scholar 

  21. Su H, Jia Q, Shan S (2016) Synthesis and characterization of Schiff base contained dextran microgels in water-in-oil inverse microemulsion. Carbohydr Polym 152:156–162. https://doi.org/10.1016/j.carbpol.2016.06.091

    Article  CAS  PubMed  Google Scholar 

  22. Jalalvandi E, Hanton LR, Moratti SC (2017) Schiff-base based hydrogels as degradable platforms for hydrophobic drug delivery. Eur Polym J 90:13–24. https://doi.org/10.1016/j.eurpolymj.2017.03.003

    Article  CAS  Google Scholar 

  23. Zhao G, Long L, Zhang L et al (2017) Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 7:3383. https://doi.org/10.1038/s41598-017-03111-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergal A, Andac M (2023) Detailed investigation and influence of oxidation degree on synthesis, characterization and antibacterial activity of β- cyclodextrin. Carbohydr Res 533:108936. https://doi.org/10.1016/j.carres.2023.108936

    Article  CAS  PubMed  Google Scholar 

  25. Higuchi T, Connors K (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212

    CAS  Google Scholar 

  26. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444. https://doi.org/10.1517/17425241003602259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elmas A, Akyüz G, Bergal A et al (2020) Mathematical modelling of drug release. Res Eng Struct Mater. https://doi.org/10.17515/resm2020.178na0122

    Article  Google Scholar 

  28. Bergal A, Matar GH, Andaç M (2022) Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity. Bionanoscience 12:307–321. https://doi.org/10.1007/s12668-022-00958-2

    Article  Google Scholar 

  29. Fonkui TY, Ikhile MI, Njobeh PB, Ndinteh DT (2019) Benzimidazole Schiff base derivatives: synthesis, characterization and antimicrobial activity. BMC Chem. https://doi.org/10.1186/s13065-019-0642-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Su H, Zhang W, Wu Y et al (2018) Schiff base-containing dextran nanogel as pH-sensitive drug delivery system of doxorubicin: synthesis and characterization. J Biomater Appl 33:170–181. https://doi.org/10.1177/0885328218783969

    Article  CAS  PubMed  Google Scholar 

  31. Reiss A, Cioateră N, Dobrițescu A et al (2021) Bioactive Co(II), Ni(II), and Cu(II) complexes containing a tridentate sulfathiazole-based (ONN) Schiff base. Molecules 26:3062. https://doi.org/10.3390/molecules26103062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bisson-Boutelliez C, Fontanay S, Finance C, Kedzierewicz F (2010) Preparation and physicochemical characterization of amoxicillin β-cyclodextrin complexes. AAPS PharmSciTech 11:574–581. https://doi.org/10.1208/s12249-010-9412-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Güncüm E, Işıklan N, Anlaş C et al (2018) Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin—an antimicrobial drug. Artif Cells Nanomed Biotechnol 46:964–973. https://doi.org/10.1080/21691401.2018.1476371

    Article  CAS  PubMed  Google Scholar 

  34. Güncüm E, Bakırel T, Anlaş C et al (2018) Novel amoxicillin nanoparticles formulated as sustained release delivery system for poultry use. J Vet Pharmacol Ther 41:588–598. https://doi.org/10.1111/jvp.12505

    Article  CAS  PubMed  Google Scholar 

  35. Fan W, Xu Y, Li Z, Li Q (2019) Folic acid-modified β-cyclodextrin nanoparticles as drug delivery to load DOX for liver cancer therapeutics. Soft Mater 17:437–447. https://doi.org/10.1080/1539445x.2019.1624265

    Article  CAS  Google Scholar 

  36. Tran Vo TM, Piroonpan T, Preuksarattanawut C et al (2022) Characterization of pH-responsive high molecular-weight chitosan/poly (vinyl alcohol) hydrogel prepared by gamma irradiation for localizing drug release. Bioresour Bioprocess. https://doi.org/10.1186/s40643-022-00576-6

    Article  Google Scholar 

  37. Loftsson T, Jarho P, Másson M, Järvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351. https://doi.org/10.1517/17425247.2.1.335

    Article  CAS  PubMed  Google Scholar 

  38. Ouyang J, Li Z, Miao J et al (2022) Antibacterial activity of carboxymethyl chitosan dialdehyde starch Schiff base and its metal complex. Res Square. https://doi.org/10.21203/rs.3.rs-1669122/v1

    Article  Google Scholar 

Download references

Funding

This research was funded by Ondokuz Mayıs University under Scientific Research (BAP) project (Project Number: PYO. FEN.1901.19.003).

Author information

Authors and Affiliations

Authors

Contributions

AB: Resources, Data curation, Investigation, Validation, Manuscript drafting, Writing—original draft. MA: Resources, Project administration, Validation; Supervision.

Corresponding author

Correspondence to Ayhan Bergal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 391 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergal, A., Andac, M. Fabrication and Investigation of Oxidized-β-Cyclodextrin Nanoparticle as a Novel Class pH Responsive Drug Delivery Vehicle. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03082-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03082-8

Keywords

Navigation