Skip to main content
Log in

Synthesis of Amino-protected Chitosan by Tripolyphosphate and Epichlorohydrin Modification: Cr(VI) Adsorption and Reaction Mechanism

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan has shown high application potential in the adsorptive removal of pollutants, but due to its weak mechanical strength and acid resistance, it is limited in practical water treatment applications. To address this issue, cross-linking has been widely used to enhance the stability of chitosan, but these methods inevitably consume the effective functional groups of chitosan and reduce its adsorption performance. In this study, the epichlorohydrin modified chitosan protected by sodium tripolyphosphate (ECS) was synthesized for removing Cr(VI). The synthesized adsorbent exhibited good adsorption performance for Cr(VI), the maximum adsorption capacity of the synthetic composite for Cr(VI) was 144.55 mg/g, which is consistent with the Langmuir model calculated date (145.18 mg/g). Effect of pH value, temperature, and time were discussed, which indicated that pseudo-first-order kinetic and Langmuir isotherm models can provide better agreement with experimental data. Characterization results indicated that the removal mechanism of Cr(VI) by ECS was a synergistic effect of electrostatic adsorption and electron reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data will be available upon request from the corresponding author.

References

  1. Borsagli FGLM, Mansur AAP, Chagas P, Oliveira LCA, Mansur HS (2015) O-carboxymethyl functionalization of chitosan: complexation and adsorption of cd (II) and cr (VI) as heavy metal pollutant ions. React Funct Polym 97:37–47

    Article  Google Scholar 

  2. Guo C, Chen Y, Xia W, Qu X, Lin LS (2019) Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project. Sci Total Environ 711:134543

    Article  ADS  PubMed  Google Scholar 

  3. Zhu Q-y, Zhao L-y, Sheng D, Chen Y-j, Hu X, Lian H-z, Mao L, Cui X-b (2019) Speciation analysis of chromium by carboxylic group functionalized mesoporous silica with inductively coupled plasma mass spectrometry. Talanta 195:173–180. https://doi.org/10.1016/j.talanta.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  4. Ouyang M, Hu K, Jiang Q, Yao Q, Zhou H, Deng Y, Shen Y, Li F, Zhuang L, Wang G (2022) An approach on chromium discharge reduction: effect and mechanism of ketone carboxylic acid as high exhaustion chrome tanning agent. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.133125

    Article  Google Scholar 

  5. Song W, Tong T, Xu J, Wu N, Ren L, Li M, Tong J (2022) Preparation and application of green chitosan/ploy (vinyl alcohol) porous microspheres for the removal of hexavalent chromium. Mater Sci Eng. https://doi.org/10.1016/j.mseb.2022.115922

    Article  Google Scholar 

  6. Dawodu FA, Akpan BM, Akpomie KG (2019) Sequestered capture and desorption of hexavalent chromium from solution and textile wastewater onto low cost Heinsia crinita seed coat biomass. Appl Water Sci. https://doi.org/10.1007/s13201-019-1114-6

    Article  Google Scholar 

  7. Golbaz S, Jafari AJ, Rafiee M, Kalantary RR (2014) Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: mechanisms and theory. Chem Eng J 253:251–257. https://doi.org/10.1016/j.cej.2014.05.074

    Article  CAS  Google Scholar 

  8. Li Y, Wang S, Wu N, Li Y, Zhang X, Ma Z (2022) Electrochemical synthesis of PANI-ERGO composite electrode and its application in the reduction of hexavalent chromium. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107447

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hwa B, Xs B, Hz B, Pan TB, Fka B (2020) Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes. J Hazard Mater. 384:121459

    Article  Google Scholar 

  10. Zhang H, Li M, Zhu C, Tang Q, Kang P, Cao J (2020) Preparation of magnetic alpha-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram Int 46(1):81–88. https://doi.org/10.1016/j.ceramint.2019.08.236

    Article  CAS  Google Scholar 

  11. Js A, Yha B, Zya B, Lt A, Yy A, Sq A, Sc A, Dl A, Hz C, Swc D (2021) Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous cr (VI) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism—ScienceDirect. J Hazard Mater 419:126543

    Article  Google Scholar 

  12. Hariz SHB, Lahmar H, Rekhila G, Bouhala A, Trari M, Benamira M (2022) A novel MgCr2O4/WO(3)hetero-junction photocatalyst for solar photo reduction of hexavalent chromium cr(VI). J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2022.113986

    Article  Google Scholar 

  13. Pechishcheva NV, Estemirova SK, Kim V, Zaitceva PV, Sterkhov EV, Shchapova YV, Zhidkov IS, Skrylnik MY (2022) Adsorption of heхavalent chromium on mechanically activated graphite. Diam Relat Mater 127

    Article  ADS  CAS  Google Scholar 

  14. Syf A, Peng ZA, Jlg A, Lin TA, Gmz A, Bs A, Wcc A, Jl A, Jy B (2020) Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation Science Direct. Chem Eng J 385

    Article  Google Scholar 

  15. Kong Q, Guo W, Sun R, Qin M, Zhao Z, Du Y, Zhang H, Zhao C, Wang X, Zhang R, Zhang X (2021) Enhancement of chromium removal and energy production simultaneously using iron scrap as anodic filling material with pyrite-based constructed wetland-microbial fuel cell. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106630

    Article  Google Scholar 

  16. Kuang Q, Liu K, Wang Q, Chang Q (2023) Three-dimensional hierarchical pore biochar prepared from soybean protein and its excellent cr (VI) adsorption. Sep Purif Technol 304:122295

    Article  CAS  Google Scholar 

  17. Miao S, Guo J, Deng Z, Yu J, Dai Y (2022) Adsorption and reduction of cr (VI) in water by iron-based metal-organic frameworks (Fe-MOFs) composite electrospun nanofibrous membranes. J Clean Prod 370:133566

    Article  CAS  Google Scholar 

  18. Poudel MB, Awasthi GP, Kim HJ (2021) Novel insight into the adsorption of cr (VI) and pb (II) ions by MOF derived co-al layered double hydroxide@ hematite nanorods on 3D porous carbon nanofiber network. Chem Eng J 417:129312

    Article  CAS  Google Scholar 

  19. Sulistiyo CD, Cheng K-C, Su’andi HJ, Yuliana M, Hsieh C-W, Ismadji S, Angkawijaya AE, Go AW, Hsu HY, Tran-Nguyen PL (2022) Removal of hexavalent chromium using durian in the form of rind, cellulose, and activated carbon: comparison on adsorption performance and economic evaluation. J Clean Prod 380:135010

    Article  CAS  Google Scholar 

  20. Tk A, Gk B, Ct A (2021) Hexavalent chromium adsorption onto crosslinked chitosan and chitosan/β-cyclodextrin beads: novel materials for water decontamination. J Environ Chem Eng 9(4):105581

    Article  Google Scholar 

  21. Huang Y, Wang B, Lv J, He Y, Zhang H, Li W, Li Y, Wagberg T, Hu G (2022) Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for cr(VI) removal from water. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2022.129270

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bhatnagar A, Sillanp M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhao M, Cheng Q, Wang C, Li H, Han X, Fan Z, Su G, Pan D, Li Z (2021) Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.130927

    Article  PubMed  PubMed Central  Google Scholar 

  24. Valadi FM, Shahsavari S, Akbarzadeh E, Gholami MR (2022) Preparation of new MOF-808/chitosan composite for cr(VI) adsorption from aqueous solution: experimental and DFT study. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119383

    Article  PubMed  Google Scholar 

  25. Tunali Akar S, Tunc D, Sayin F, Akar T (2023) Chitosan functionalized alunite as a green composite for sorption and preconcentration of copper: from parametric optimization to application. J Polym Environ 31(4):1359–1372. https://doi.org/10.1007/s10924-022-02680-2

    Article  CAS  Google Scholar 

  26. Wang J, Zhuang S (2022) Chitosan-based materials: preparation, modification and application. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.131825

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahaninia MH, Wilson LD (2017) Phosphate uptake studies of cross-linked chitosan bead materials. J Coll Interfac Sci 485:201–212

    Article  ADS  CAS  Google Scholar 

  28. Elsayed NH, Alatawi R, Monier M (2020) Amidoxime modified chitosan based ion-imprinted polymer for selective removal of uranyl ions. Carbohydr Polym 256:117509

    Article  PubMed  Google Scholar 

  29. Sb A, Wy A, Yw A, Yy A, Ys A, Kl B (2020) PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of cr(VI) from aqueous solutions by adsorption combined with reduction: behaviors and mechanisms—sciencedirect. Chem Eng J 399:125762

    Article  Google Scholar 

  30. Chang YL, Liu TC, Tsai ML (2014) Selective isolation of trypsin inhibitor and lectin from soybean whey by chitosan/tripolyphosphate/genipin co-crosslinked beads. Int J Mol Sci 15(6):9979–9990. https://doi.org/10.3390/ijms15069979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim C, Hwang DS, Lee DW (2021) Intermolecular interactions of chitosan: degree of acetylation and molecular weight. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.117782

    Article  PubMed  Google Scholar 

  32. Yang H-R, Li S-S, Shan X-C, Yang C, An Q-D, Zhai S-R, Xiao Z-Y (2022) Hollow polyethyleneimine/carboxymethyl cellulose beads with abundant and accessible sorption sites for ultra-efficient chromium (VI) and phosphate removal. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.119607

    Article  PubMed  PubMed Central  Google Scholar 

  33. Naskar S, Sharma S, Kuotsu K (2019) Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 49:66–81

    Article  CAS  Google Scholar 

  34. Lima EC, Hosseini-Bandegharaei A, Moreno-Pirajan JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  35. Suganya E, Saranya N, Sivaprakasam S, Varghese LA, Narayanasamy S (2020) Experimentation on raw and phosphoric acid activated Eucalyptuscamadulensis seeds as novel biosorbents for hexavalent chromium removal from simulated and electroplating effluents. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100977

    Article  Google Scholar 

  36. Gao X, Guo C, Hao J, Zhang Y, Li M, Zhao Z (2022) Efficient removal of cr (VI) by modified sodium alginate via synergistic adsorption and photocatalytic reduction. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.152259

    Article  Google Scholar 

  37. Narayanasamy S, Sundaram V, Sundaram T, Vo D (2022) Biosorptive ascendency of plant based biosorbents in removing hexavalent chromium from aqueous solutions–insights into isotherm and kinetic studies. Environ Res 210:112902

    Article  CAS  PubMed  Google Scholar 

  38. Ekanayake A, Rajapaksha AU, Selvasembian R, Vithanage M (2022) Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media. Environ Res. https://doi.org/10.1016/j.envres.2022.113073

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suarez Meraz KA, Ponce Vargas SM, Lopez Maldonado JT, Cornejo Bravo JM, Oropeza Guzman MT, Lopez Maldonado EA (2016) Eco-friendly innovation for nejayote coagulation-flocculation process using chitosan: evaluation through zeta potential measurements. Chem Eng J 284:536–542. https://doi.org/10.1016/j.cej.2015.09.026

    Article  CAS  Google Scholar 

  40. Kong AQ, Ji YH, Ma HH, Song YF, He BQ, Li JXA (2018) Novel route for the removal of Cu(II) and ni(II) ions via homogeneous adsorption by chitosan solution. J Clean Prod 192:801–808. https://doi.org/10.1016/j.jclepro.2018.04.271

    Article  CAS  Google Scholar 

  41. Wang Z, Wang Y, Cao S, Liu S, Chen Z, Chen J, Chen Y, Fu J (2020) Fabrication of core@shell structural Fe-Fe2O3@PHCP nanochains with high saturation magnetization and abundant amino groups for hexavalent chromium adsorption and reduction. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121483

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang ZW, Wang YH, Cao S, Liu SH, Chen ZM, Chen JF, Chen Y, Fu JW (2020) Fabrication of core@shell structural Fe-Fe2O3@PHCP nanochains with high saturation magnetization and abundant amino groups for hexavalent chromium adsorption and reduction. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121483

    Article  PubMed  PubMed Central  Google Scholar 

  43. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  44. Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194. https://doi.org/10.1016/j.jhazmat.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  45. Narayanasamy S, Sundaram V, Sundaram T, Vo D-VN (2022) Biosorptive ascendency of plant based biosorbents in removing hexavalent chromium from aqueous solutions—insights into isotherm and kinetic studies. Environ Res. https://doi.org/10.1016/j.envres.2022.112902

    Article  PubMed  Google Scholar 

  46. Liu XQ, Zhang YY, Liu Y, Zhang TA (2022) Green method to synthesize magnetic zeolite/chitosan composites and adsorption of hexavalent chromium from aqueous solutions. Int J Biol Macromol 194:746–754. https://doi.org/10.1016/j.ijbiomac.2021.11.121

    Article  CAS  PubMed  Google Scholar 

  47. Aharoni C, Ungarish M (1976) Kinetics of activated chemisorption.1. The non-elovichian part of isotherm. J Chem Soc-Faraday Trans I 72:400–408. https://doi.org/10.1039/f19767200400

    Article  CAS  Google Scholar 

  48. Wang B, Zhang W, Li L, Guo W, Xing J, Wang H, Hu X, Lyu W, Chen R, Song J, Chen L, Hong Z (2020) Novel talc encapsulated lanthanum alginate hydrogel for efficient phosphate adsorption and fixation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127124

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guo X, Wang JL (2019) A general kinetic model for adsorption: theoretical analysis and modeling. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111100

    Article  Google Scholar 

  50. Zeng X, Zhang G, Wen J, Li X, Zhu J, Wu Z (2023) Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: performance, interaction and mechanism. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.137869

    Article  PubMed  Google Scholar 

  51. Khalil TE, Elhusseiny AF, El-dissouky A, Ibrahim NM (2020) Functionalized chitosan nanocomposites for removal of toxic cr (VI) from aqueous solution. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2019.104407

    Article  Google Scholar 

  52. Nowruzi R, Heydari M, Javanbakht V (2020) Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. Int J Biol Macromol 147:209–216. https://doi.org/10.1016/j.ijbiomac.2020.01.044

    Article  CAS  PubMed  Google Scholar 

  53. Perera HM, Rajapaksha AU, Liyanage S, Ekanayake A, Selvasembian R, Daverey A, Vithanage M (2023) Enhanced adsorptive removal of hexavalent chromium in aqueous media using chitosan-modified biochar: synthesis, sorption mechanism, and reusability. Environ Res. https://doi.org/10.1016/j.envres.2023.115982

    Article  PubMed  Google Scholar 

  54. Omer AM, Abd El-Monaem EM, Abd El-Latif MM, El-Subruiti GM, Eltaweil AS (2021) Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of cr(VI) from aqueous solutions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118084

    Article  PubMed  Google Scholar 

  55. Sarojini G, Kannan P, Rajamohan N, Rajasimman M (2023) Bio-fabrication of porous magnetic Chitosan/Fe3O4 nanocomposite using Azolla pinnata for removal of chromium—parametric effects, surface characterization and kinetics. Environ Res. https://doi.org/10.1016/j.envres.2022.114822

    Article  PubMed  Google Scholar 

  56. Liu S, Gao J, Zhang L, Yang Y, Liu X (2021) Diethylenetriaminepentaacetic acid-thiourea-modified magnetic chitosan for adsorption of hexavalent chromium from aqueous solutions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118555

    Article  PubMed  Google Scholar 

  57. Han S, Zhou X, Xie H, Wang X, Yang L, Wang H, Hao C (2022) Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135486

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yu X, Zhang J, Zheng Y (2021) Perchlorate adsorption onto epichlorohydrin crosslinked chitosan hydrogel beads. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143236

    Article  PubMed  PubMed Central  Google Scholar 

  59. He S, Yin R, Chen Y, Lai T, Guo W, Zeng L, Zhu M (2021) Consolidated 3D Co3Mn-layered double hydroxide aerogel for photo-assisted peroxymonosulfate activation in metronidazole degradation. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130172

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li R, Liang W, Li M, Jiang S, Huang H, Zhang Z, Wang JJ, Awasthi MK (2017) Removal of cd(II) and cr(VI) ions by highly cross-linked Thiocarbohydrazide-chitosan gel. Int J Biol Macromol 104:1072–1081. https://doi.org/10.1016/j.ijbiomac.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  61. Wu S, Li M, Xin L, Long H, Gao X (2022) Efficient removal of cr(VI) by triethylenetetramine modified sodium alginate/carbonized chitosan composite via adsorption and photocatalytic reduction. J Mol Liq. https://doi.org/10.1016/j.molliq.2022.120160

    Article  Google Scholar 

  62. Xuan K, Wang J, Gong Z, Wang X, Li J, Guo Y, Sun Z (2022) Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium (VI) from ‘wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127834

    Article  PubMed  Google Scholar 

  63. Yang Y, Zeng L, Lin Z, Jiang H, Zhang A (2021) Adsorption of Pb2+, Cu2+ and Cd2+ by sulfhydryl modified chitosan beads. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118622

    Article  PubMed  PubMed Central  Google Scholar 

  64. Omer AM, Khalifa RE, Hu Z, Zhang H, Liu C, Ouyang XK (2019) fabrication of tetraethylenepentamine functionalized alginate beads for adsorptive removal of cr (VI) from aqueous solutions. Int J Biol Macromol 125:1221–1231

    Article  CAS  PubMed  Google Scholar 

  65. Zheng B, Ye Y, Hu B, Luo C, Zhu Y (2019) Enhanced removal of chromium(vi) by Fe(iii)-reducing bacterium coated ZVI for wastewater treatment: batch and column experiments. RSC Adv 9:36144–36153

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zkab C, Yda B, Jwa D, Hzab C, Lfa B (2021) Synthesis of a new ion-imprinted polymer for selective cr(VI) adsorption from aqueous solutions effectively and rapidly—sciencedirect. J Coll Interfac Sci 588:749–760

    Article  Google Scholar 

  67. Song J, Chen L, Niu Y, Wei Z, Sun Y (2023) Study on amino-functionalized porous carbon materials for MB and cr(VI) adsorption. J Polym Environ. https://doi.org/10.1007/s10924-023-02781-6

    Article  Google Scholar 

  68. Geng Z (2019) Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: adsorption performance and mechanism. Chem Eng J 361:1497–1510

    Article  ADS  CAS  Google Scholar 

  69. Zhang W, Wang H, Hu X, Feng H, Xiong W, Guo W, Zhou J, Mosa A, Peng Y (2019) Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced cr(VI) removal. J Clean Prod 231:733–745. https://doi.org/10.1016/j.jclepro.2019.05.219

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China [grant number 51904004], Outstanding Youth Scientific Research Project of Colleges and Universities in Anhui Province [grant number 2022AH030044], and Open Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education [grant number BWPU2021KF10].

Author information

Authors and Affiliations

Authors

Contributions

SZ: Methodology, Formal analysis, Validation, Writing—Original draft preparation. LX: Validation, Investigation, Writing—Original draft preparation, Supervision. ML: Conceptualization, Writing—Reviewing and Editing. FF: Supervision, Writing—Reviewing and Editing. HL: Methodology, Formal analysis. XG: Conceptualization, Methodology, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Lili Xin or Xiangpeng Gao.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xin, L., Li, M. et al. Synthesis of Amino-protected Chitosan by Tripolyphosphate and Epichlorohydrin Modification: Cr(VI) Adsorption and Reaction Mechanism. J Polym Environ 32, 703–717 (2024). https://doi.org/10.1007/s10924-023-03005-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03005-7

Keywords

Navigation