Skip to main content
Log in

Chitosan Functionalized Alunite as a Green Composite for Sorption and Preconcentration of Copper: From Parametric Optimization to Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, alunite was immobilized with chitosan to investigate the effective parameters for its adsorption and preconcentration potential for Cu2+ ions. After immobilization, the proposed composite’s adsorption efficiency increased by about 93% and 9%, respectively, when compared to alunite and chitosan components. The pseudo-second-order model better described Cu2+ adsorption. Equilibrium data indicated that Cu2+ adsorption followed the order of Langmuir > D-R > Freundlich with the maximum monolayer adsorption capacities of 42.43, 51.50, and 58.14 mg g−1 at 10, 20, and 30 °C, respectively. Regeneration of the biopolymer composite was achieved with 0.1 M HNO3. IR, SEM/EDX, TG/DTA analysis, and zeta potential measurements were used to characterize the biopolymer composite. An excellent Cu2+ removal performance was observed in a dynamic flow mode, with an adsorption yield of 98.03% at an optimum flow rate of 0.2 mL min−1. The preconcentration of Cu2+ ions by biopolymer composite was explored in the second stage of this work to optimize the type, concentration, and volume of eluent and sample volume. The influence of foreign ions on Cu2+ preconcentration performance was also investigated. At predefined optimum conditions and a 95% confidence level, the recovery yield was 99.97 ± 0.02%, and the RSD was 0.07%. The suggested preconcentration method's LOD and LOQ were 16.81 and 56.00 ng mL−1, respectively. The accuracy and applicability of the method were evaluated using certified standard materials and real water samples, and the produced biopolymer composite was effectively used for Cu2+ preconcentration from real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data sets used and/or studied in the present work can be obtained from the corresponding author.

References

  1. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, Yaseen ZM (2021) Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model. Chemosphere 276:130162. https://doi.org/10.1016/j.chemosphere.2021.130162

    Article  CAS  PubMed  Google Scholar 

  2. Awang Chee DN, Aziz F, Mohamed Amin MA, Ismail AF (2021) Copper adsorption on ZIF-8/alumina hollow fiber membrane: a response surface methodology analysis. Arabian J Sci Eng 46(7):6775–6786. https://doi.org/10.1007/s13369-021-05636-1

    Article  CAS  Google Scholar 

  3. Lenka SP, Shaikh WA, Owens G, Padhye LP, Chakraborty S, Bhattacharya T (2021) Removal of copper from water and wastewater using dolochar. Water Air Soil Pollut 232(5):167. https://doi.org/10.1007/s11270-021-05135-x

    Article  CAS  Google Scholar 

  4. Orta MdM, Martín J, Santos JL, Aparicio I, Medina-Carrasco S, Alonso E (2020) Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Appl Clay Sci 198:105838. https://doi.org/10.1016/j.clay.2020.105838

    Article  CAS  Google Scholar 

  5. Liu L, Wang Y, Cai C (2021) Study on decomposition kinetics of activated alunite concentrate from copper tailings and leaching behavior of valuable elements. Cleaner Mater 1:100008. https://doi.org/10.1016/j.clema.2021.100008

    Article  CAS  Google Scholar 

  6. Taghiyev EI (2020) New environment friendly technologies for processing alunite ores. Transactions of Azerbaijan High Tech Educ Inst 22(6):56–65

    Google Scholar 

  7. Akar ST, San E, Akar T (2016) Chitosan–alunite composite: An effective dye remover with high sorption, regeneration and application potential. Carbohydr Polym 143:318–326. https://doi.org/10.1016/j.carbpol.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  8. Özacar M (2003) Adsorption of phosphate from aqueous solution onto alunite. Chemosphere 51(4):321–327. https://doi.org/10.1016/S0045-6535(02)00847-0

    Article  CAS  PubMed  Google Scholar 

  9. Tunali Akar S, Balk Y, Sayin F, Akar T (2022) Magnetically functionalized alunite as a recyclable and ecofriendly adsorbent for efficient removal of Pb2+. J Water Process Eng 48:102867. https://doi.org/10.1016/j.jwpe.2022.102867

    Article  Google Scholar 

  10. Akar ST, Tosun I, Ozcan A, Gedikbey T (2010) Phosphate removal potential of the adsorbent material prepared from thermal decomposition of alunite ore–KCl mixture in environmental cleanup. Desalination 260(1):107–113. https://doi.org/10.1016/j.desal.2010.04.057

    Article  CAS  Google Scholar 

  11. Özacar M, Şengil İA (2003) Adsorption of reactive dyes on calcined alunite from aqueous solutions. J Hazard Mater 98(1):211–224. https://doi.org/10.1016/S0304-3894(02)00358-8

    Article  CAS  PubMed  Google Scholar 

  12. Tunali Akar S, Alp T, Yilmazer D (2013) Enhanced adsorption of Acid Red 88 by an excellent adsorbent prepared from alunite. J Chem Technol Biotechnol 88(2):293–304. https://doi.org/10.1002/jctb.3831

    Article  CAS  Google Scholar 

  13. Tunali S, Özcan AS, Özcan A, Gedikbey T (2006) Kinetics and equilibrium studies for the adsorption of Acid Red 57 from aqueous solutions onto calcined-alunite. J Hazard Mater 135(1):141–148. https://doi.org/10.1016/j.jhazmat.2005.11.033

    Article  CAS  PubMed  Google Scholar 

  14. Özacar M, Şengil İA (2004) Equilibrium data and process design for adsorption of disperse dyes onto Alunite. Environ Geol 45(6):762–768. https://doi.org/10.1007/s00254-003-0936-5

    Article  CAS  Google Scholar 

  15. Jabli M (2020) Synthesis, characterization, and assessment of cationic and anionic dye adsorption performance of functionalized silica immobilized chitosan bio-polymer. Int J Biol Macromol 153:305–316. https://doi.org/10.1016/j.ijbiomac.2020.02.323

    Article  CAS  PubMed  Google Scholar 

  16. Nawi MA, Sabar S, Jawad AH, Sheilatina NWSW (2010) Adsorption of Reactive Red 4 by immobilized chitosan on glass plates: towards the design of immobilized TiO2–chitosan synergistic photocatalyst-adsorption bilayer system. Biochem Eng J 49(3):317–325. https://doi.org/10.1016/j.bej.2010.01.006

    Article  CAS  Google Scholar 

  17. Futalan CM, Kan C-C, Dalida ML, Hsien K-J, Pascua C, Wan M-W (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83(2):528–536. https://doi.org/10.1016/j.carbpol.2010.08.013

    Article  CAS  Google Scholar 

  18. Xiang J, Lin Q, Yao X, Yin G (2021) Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environ Res 195:110650. https://doi.org/10.1016/j.envres.2020.110650

    Article  CAS  PubMed  Google Scholar 

  19. Zia Q, Tabassum M, Umar M, Nawaz H, Gong H, Li J (2021) Cross-linked chitosan coated biodegradable porous electrospun membranes for the removal of synthetic dyes. React Funct Polym 166:104995. https://doi.org/10.1016/j.reactfunctpolym.2021.104995

    Article  CAS  Google Scholar 

  20. Popuri SR, Vijaya Y, Boddu VM, Abburi K (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100(1):194–199. https://doi.org/10.1016/j.biortech.2008.05.041

    Article  CAS  PubMed  Google Scholar 

  21. Adamczuk A, Kołodyńska D (2015) Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem Eng J 274:200–212. https://doi.org/10.1016/j.cej.2015.03.088

    Article  CAS  Google Scholar 

  22. Gerard N, Santhana Krishnan R, Ponnusamy SK, Cabana H, Vaidyanathan VK (2016) Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Process Saf Environ Prot 104:185–195. https://doi.org/10.1016/j.psep.2016.09.006

    Article  CAS  Google Scholar 

  23. Rasoulzadeh H, Dehghani MH, Mohammadi AS, Karri RR, Nabizadeh R, Nazmara S, Kim K-H, Sahu JN (2020) Parametric modelling of Pb(II) adsorption onto chitosan-coated Fe3O4 particles through RSM and DE hybrid evolutionary optimization framework. J Mol Liq 297:111893. https://doi.org/10.1016/j.molliq.2019.111893

    Article  CAS  Google Scholar 

  24. Nguyen VC, Pho QH (2014) Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive blue 19 and Ni2+ ions. Sci World J 2014:273082. https://doi.org/10.1155/2014/273082

    Article  CAS  Google Scholar 

  25. Tunali Akar S, San E, Akar T (2016) Chitosan–alunite composite: an effective dye remover with high sorption, regeneration and application potential. Carbohydr Polym 143:318–326. https://doi.org/10.1016/j.carbpol.2016.01.066

    Article  CAS  Google Scholar 

  26. Kashkai MA, Babaev IA (1969) Thermal investigations on alunite and its mixtures with quartz and dickite. Mineral Mag 37(285):128–134. https://doi.org/10.1180/minmag.1969.037.285.13

    Article  CAS  Google Scholar 

  27. Gedikbey T, Tunali S (2004) Thermal analysis of Şaphane area alunites and their products. Anadolu Univ J Sci Technol 5(1):159–164

    Google Scholar 

  28. Raja AG, Selva Arasu KA, Rajaram R (2022) Synthesis, characterization and application of chitosan-TPP-ZnO nanocomposite for efficient treatment of effluent containing sulphur dye. Mater Today. https://doi.org/10.1016/j.matpr.2022.07.426

    Article  Google Scholar 

  29. Azevedo JR, Sizilio RH, Brito MB, Costa AMB, Serafini MR, Araújo AAS, Santos MRV, Lira AAM, Nunes RS (2011) Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J Therm Anal Calorim 106(3):685–689. https://doi.org/10.1007/s10973-011-1429-5

    Article  CAS  Google Scholar 

  30. Liu C, Zhang H-X (2022) Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: a critical review. J Environ Chem Eng 10(2):107393. https://doi.org/10.1016/j.jece.2022.107393

    Article  CAS  Google Scholar 

  31. Abou El-Reash YG (2016) Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2016.08.014

    Article  Google Scholar 

  32. Babakhani A, Sartaj M (2022) Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption. J Environ Chem Eng 10(2):107147. https://doi.org/10.1016/j.jece.2022.107147

    Article  CAS  Google Scholar 

  33. Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2020) Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbohydr Polym 234:115890. https://doi.org/10.1016/j.carbpol.2020.115890

    Article  CAS  PubMed  Google Scholar 

  34. Moreira ALdSL, Pereira AdS, Speziali MG, Novack KM, Gurgel LVA, Gil LF (2018) Bifunctionalized chitosan: a versatile adsorbent for removal of Cu(II) and Cr(VI) from aqueous solution. Carbohydr Polym 201:218–227. https://doi.org/10.1016/j.carbpol.2018.08.055

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Zhang L, Hu D, Yang R, Zhang J, Guan Y, Lv F, Gao H (2021) A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int J Biol Macromol 187:922–930. https://doi.org/10.1016/j.ijbiomac.2021.07.181

    Article  CAS  PubMed  Google Scholar 

  36. Akar T, Tunali S, Çabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136(3):389–405. https://doi.org/10.1007/s12010-007-9032-8

    Article  CAS  PubMed  Google Scholar 

  37. Akar T, Arslan S, Akar ST (2013) Utilization of Thamnidium elegans fungal culture in environmental cleanup: a reactive dye biosorption study. Ecol Eng 58:363–370. https://doi.org/10.1016/j.ecoleng.2013.06.026

    Article  Google Scholar 

  38. Saood Manzar M, Ahmad T, Ullah N, Velayudhaperumal Chellam P, John J, Zubair M, Brandão RJ, Meili L, Alagha O, Çevik E (2022) Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process modeling. Sep Purif Technol 287:120559. https://doi.org/10.1016/j.seppur.2022.120559

    Article  CAS  Google Scholar 

  39. Mall ID, Srivastava VC, Agarwal NK (2007) Adsorptive removal of Auramine-O: Kinetic and equilibrium study. J Hazard Mater 143(1):386–395. https://doi.org/10.1016/j.jhazmat.2006.09.059

    Article  CAS  PubMed  Google Scholar 

  40. Li X-J, Yan C-J, Luo W-J, Gao Q, Zhou Q, Liu C, Zhou S (2016) Exceptional cerium(III) adsorption performance of poly(acrylic acid) brushes-decorated attapulgite with abundant and highly accessible binding sites. Chem Eng J 284:333–342. https://doi.org/10.1016/j.cej.2015.09.003

    Article  CAS  Google Scholar 

  41. Wang S, Gao Q, Luo WJ, Xu J, Zhou CG, Xia H (2013) Removal of methyl blue from aqueous solution by magnetic carbon nanotube. Water Sci Technol 68(3):665–673. https://doi.org/10.2166/wst.2013.289

    Article  CAS  PubMed  Google Scholar 

  42. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsa-kademiens. Handlingar 24:1–39

    Google Scholar 

  43. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  44. Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M (2022) Adsorption isotherm models: a comprehensive and systematic review (2010–2020). Sci Total Environ 812:151334. https://doi.org/10.1016/j.scitotenv.2021.151334

    Article  CAS  PubMed  Google Scholar 

  45. Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  46. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  47. Dubinin MM, Radushkevich LV (1947) The Equation of the Characteristic Curve of Activated Charcoal. Proc Acad Sci Phys Chem Sect 55:331–333

    Google Scholar 

  48. Zheng X, Jiang N, Zheng H, Wu Y, Heijman SGJ (2022) Predicting adsorption isotherms of organic micropollutants by high-silica zeolite mixtures. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.120009

    Article  PubMed  PubMed Central  Google Scholar 

  49. Langmuir I (1916) The constitution and fundamental properties of solids and liquids Part I Solids. J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  50. Dubinin M, Radushkevich L (1947) Equation of the characteristic curve of activated charcoal. Chem Zentr 1:875–890

    Google Scholar 

  51. Alberti G, Amendola V, Pesavento M, Biesuz R (2012) Beyond the synthesis of novel solid phases: review on modelling of sorption phenomena. Coord Chem Rev 256(1):28–45. https://doi.org/10.1016/j.ccr.2011.08.022

    Article  CAS  Google Scholar 

  52. Hu Q, Zhang Z (2019) Application of Dubinin-Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J Mol Liq 277:646–648. https://doi.org/10.1016/j.molliq.2019.01.005

    Article  CAS  Google Scholar 

  53. Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60(2):235–241. https://doi.org/10.1021/cr60204a006

    Article  CAS  Google Scholar 

  54. Burke DM, Morris MA, Holmes JD (2013) Chemical oxidation of mesoporous carbon foams for lead ion adsorption. Sep Purif Technol 104:150–159. https://doi.org/10.1016/j.seppur.2012.10.049

    Article  CAS  Google Scholar 

  55. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54(7):1981–1985. https://doi.org/10.1021/je800661q

    Article  CAS  Google Scholar 

  56. Hong T, Wei L, Cui K, Dong Y, Li R, Zhang T, Zhao Y, Luo L (2021) Adsorption performance of volatile organic compounds on activated carbon fibers in a fixed bed column. J Environ Chem Eng 9(6):106347. https://doi.org/10.1016/j.jece.2021.106347

    Article  CAS  Google Scholar 

  57. Momina SM, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587. https://doi.org/10.1039/C8RA04290J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sultana S, Islam K, Hasan MA, Khan HMJ, Khan MAR, Deb A, Al Raihan M, Rahman MW (2022) Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives. Environ Nanotechnol Monit Manage 17:100651. https://doi.org/10.1016/j.enmm.2022.100651

    Article  CAS  Google Scholar 

  59. Sulejmanović J, Memić M, Šehović E, Omanović R, Begić S, Pazalja M, Ajanović A, Azhar O, Sher F (2022) Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.133971

    Article  PubMed  Google Scholar 

  60. Dilek Y, Mustafa D (2019) Flame atomic absorption determination of copper in environmental water with cloud point extraction using isonitrosoacetophenone 2-aminobenzoylhydrazone. J Anal Chem 74(5):437–443. https://doi.org/10.1134/S1061934819050022

    Article  Google Scholar 

  61. Naghizadeh M, Taher MA, Nejad LZ, Moghaddam FH (2018) Fabrication, characterization and theoretical investigation of novel Fe3O4@egg-shell membrane as a green nanosorbent for simultaneous preconcentration of Cu (II) and Tl (I) prior to ETAAS determination. Environ Nanotechnol Monit Manage 10:171–178. https://doi.org/10.1016/j.enmm.2018.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was derived from a PhD thesis, and we wish to express our gratitude to TÜBİTAK for providing Dilek Tunc with individual support during her doctoral education.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

STA: conceptualization, methodology, formal analysis, resources, writing—original draft, supervision. DT: investigation, formal analysis, visualization. FS: investigation, data curation, visualization. TA: resources, formal analysis, writing—review & editing.

Corresponding author

Correspondence to Sibel Tunali Akar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunali Akar, S., Tunc, D., Sayin, F. et al. Chitosan Functionalized Alunite as a Green Composite for Sorption and Preconcentration of Copper: From Parametric Optimization to Application. J Polym Environ 31, 1359–1372 (2023). https://doi.org/10.1007/s10924-022-02680-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02680-2

Keywords

Navigation