Skip to main content
Log in

Enhanced Hemocompatibility of Lysine Grafted Polyacrylonitrile Electrospun Nanofiber Membranes as a Potential Bilirubin Adsorption in Hemoperfusion

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hyperbilirubinemia is one of most severe clinical diseases, which is caused by the accumulation of unconjugated bilirubin. Electrospun nanofiber membranes used as highly efficient bilirubin adsorbents have been applied to remove the extra bilirubin in hemoperfusion for their high surface area and easy functionalized properties. In this work, Lysine (Lys) grafted polyacrylonitrile (PAN) electrospun nanofiber membranes doped with organic Hectorite (OHec) (Lys-HPAN@OHec) have been fabricated via a series of modified process, including pore forming, alkaline hydrolysis and grafting reaction. The obtained Lys-HPAN@OHec nanofiber membranes have been analyzed in detail and investigated the adsorption capacity for bilirubin. Compared with original PNA membranes, Lys-HPAN@OHec nanofiber membranes show an excellent bilirubin adsorption capacity and more stable rejection rate of bovine serum albumin (BSA). The maximum adsorption capacity of Lys-HPAN@OHec membranes for bilirubin is 64 mg/g, the adsorption process of Lys-HPAN@OHec membranes matched the Langmuir model well. In addition, dynamic adsorption reveals that the adsorption equilibrium time of Lys-HPAN@OHec membranes is about 2 h. Significantly, Lys-HPAN@OHec membranes have excellent biocompatibility and hemocompatibility. This study demonstrates that the novel Lys-HPAN@OHec membranes may provide a new way to treat hyperbilirubinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable for this section.

Code Availability

Not applicable for this section.

References

  1. Banks J, Montgomery D, Coody D, Yetman R (1996) Hyperbilirubinemia in the term newborn. J Pediatr Health Care Off Publ Natl Assoc Pediatr Nurse Assoc Pract 10:228–230. https://doi.org/10.1016/S0891-5245(96)90010-3

    Article  CAS  Google Scholar 

  2. Yan R, Han D, Ren J, Zhai Z, Zhou F, Cheng J (2018) Diagnostic value of conventional MRI combined with DTI for neonatal hyperbilirubinemia. Pediatr Neonatol 59:161–167. https://doi.org/10.1016/j.pedneo.2017.07.009

    Article  PubMed  Google Scholar 

  3. Kim JY, Lee DY, Kang S, Miao W, Kim H, Lee Y, Jon S (2017) Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials 133:1–10. https://doi.org/10.1016/j.biomaterials.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  4. Baydemir G, Andaç M, Bereli N, Say R, Denizli A (2007) Selective removal of bilirubin from human plasma with bilirubin-imprinted particles. Ind Eng Chem Res 46:2843–2852. https://doi.org/10.1021/ie0611249

    Article  CAS  Google Scholar 

  5. Huang Y, Yuan ZP, Zhao D, Wang F, Zhang KX, Li YS, Wen YQ, Wang CT (2019) Polymyxin B immobilized nanofiber sponge for endotoxin adsorption. Eur Polym J 110:69–75. https://doi.org/10.1016/j.eurpolymj.2018.11.008

    Article  CAS  Google Scholar 

  6. Mller BR (2010) Effect of particle size and surface area on the adsorption of albumin bonded bilirubin on activated carbon. Carbon 48:3607–3615. https://doi.org/10.1016/j.carbon.2010.06.011

    Article  CAS  Google Scholar 

  7. Chen J, Han WY, Chen J, Zong WH, Wang WC, Wang Y, Cheng GH, Li CR, Ou LL, Yu YT (2017) High performance of a unique mesoporous polystyrene-based adsorbent for blood purification. Regen Biomater 4:31–37. https://doi.org/10.1093/rb/rbw038

    Article  CAS  PubMed  Google Scholar 

  8. Ma KW, Yao DH, Chen JP, Li Y, Zhao CG, Liang GF (2018) Molecular synergistic strategy to fabricate bilirubin medical adsorbent material for hyperbilirubinemia hemoperfusion. Int J Polym Mater Po 67:727–738. https://doi.org/10.1080/00914037.2017.1376198

    Article  CAS  Google Scholar 

  9. Guo L, Zhang L, Zhang J (2009) Hollow mesoporous carbon spheres an excellent bilirubin adsorbent. Chem Commun 40:6071–6073. https://doi.org/10.1039/b911083f

    Article  CAS  Google Scholar 

  10. Zhao R, Li Y, Li X (2018) Facile hydrothermal synthesis of branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane as a highly efficient and reusable bilirubin adsorbent in hemoperfusion. J Colloid Interf Sci 514:675–685. https://doi.org/10.1016/j.jcis.2017.12.059

    Article  CAS  Google Scholar 

  11. Mokhtari-Shourijeh Z, Montazerghaem L, Olya ME (2018) Preparation of porous nanofibers from electrospun polyacrylonitrile/polyvinylidene fluoride composite nanofibers by inexpensive salt using for dye adsorption. J Polym Environ 26:3550–3563. https://doi.org/10.1007/s10924-018-1238-z

    Article  CAS  Google Scholar 

  12. Senthilkumar S, Rajesh S, Jayalakshmi A (2013) Biocompatibility and separation performance of carboxylated poly (ether-imide) incorporated polyacrylonitrile membranes. Sep Purif Techno 107:297–309. https://doi.org/10.1016/j.seppur.2013.01.041

    Article  CAS  Google Scholar 

  13. Kharaghani D, Jo YK, Khan MQ, Jeong Y, Cha HJ, Kim IS (2018) Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method. Eur Polym J 108:69–75. https://doi.org/10.1016/j.eurpolymj.2018.08.021

    Article  CAS  Google Scholar 

  14. Yi SX, Sun S, Zhang YS, Zou YS, Dai FY, Si Y (2019) Scalable fabrication of bimetal modified polyacrylonitrile (PAN) nanofibrous membranes for photocatalytic degradation of dyes. J Colloid Interf Sci 559:134–142. https://doi.org/10.1016/j.jcis.2019.10.018

    Article  CAS  Google Scholar 

  15. Kim W, Shin DH, Jun J, Kim JH, Jang J (2017) Fabrication of shape-controlled palladium nanoparticle-decorated electrospun polypyrrole/polyacrylonitrile nanofibers for hydrogen peroxide coalescing detection. Adv Mater Interfaces 4:1700573. https://doi.org/10.1002/admi.201700573

    Article  CAS  Google Scholar 

  16. Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, Akaike T, Cho CS (2007) Chitosan -graft-polyethylenimine as a gene carrier. J Control Release 117:273–280. https://doi.org/10.1016/j.jconrel.2006.10.025

    Article  CAS  PubMed  Google Scholar 

  17. Xia BL, Zhang GL, Zhang FB (2003) Bilirubin removal by cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane. J Membr Sci 226:9–20. https://doi.org/10.1016/j.memsci.2003.08.007

    Article  CAS  Google Scholar 

  18. Ju J, He G, Duan ZJ, Zhao W, Liu YF, Zhang LL, Li YH (2013) Improvement of bilirubin adsorption capacity of cellulose cetate/polyethyleneimine membrane using sodium deoxycholate. Biochem Eng J 79:144–152. https://doi.org/10.1016/j.bej.2013.07.008

    Article  CAS  Google Scholar 

  19. Jiang X, Xiang T, Xie Y, Wang R, Zhao WF, Sun SD, Zhao CS (2016) Functional polyethersulfone particles for the removal of bilirubin. J Mater Sci Mater M 27:1–12. https://doi.org/10.1007/s10856-015-5642-9

    Article  CAS  Google Scholar 

  20. Wang WW, Zhang H, Zhang ZF, Luo MY, Wang YD, Liu QZ, Chen YL, Li MF, Wang D (2017) Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin. Colloids Surf B 150:271–278. https://doi.org/10.1016/j.colsurfb.2016.10.034

    Article  CAS  Google Scholar 

  21. Deere J, Magner E, Wall JG, Hodnett BK (2002) Adsorption and activity of proteins onto mesoporous silica. J Phys Chem B 106:7340. https://doi.org/10.1023/A:1022156405117

    Article  CAS  Google Scholar 

  22. Wu KK, Song X, Cui SY, Li ZT, Jiao YP, Zhou CR (2018) Immobilization of bovine serum albumin via mussel-inspired polydopamine coating on electrospun polyethersulfone (PES) fiber mat for effective bilirubin adsorption. Appl Surf Sci 451:45–55. https://doi.org/10.1016/j.apsusc.2018.04.242

    Article  CAS  Google Scholar 

  23. Shi W, Zhang F, Zhang G (2005) Adsorption of bilirubin with polylysine carrying chitosan -coated nylon affinity membranes. J Chromatogr B 819:301–306. https://doi.org/10.1016/j.jchromb.2005.02.018

    Article  CAS  Google Scholar 

  24. Li PY, Liu YY, Ma N, Zhang WQ (2018) L-Lysine functionalized polyacrylonitrile fiber: a green and efficient catalyst for knoevenagel condensation in water. Catal Let 148:813–823. https://doi.org/10.1007/s10562-017-2287-y

    Article  CAS  Google Scholar 

  25. Fu HL, Zhang W, Zhang H, Song SB, Li W (2016) Preparation and antibacterial activity of chitosan/organic laponite nanocomposites. J Inorg Mater 31:479–484

    Article  CAS  Google Scholar 

  26. Zhang W, Yue P, Zhang H, Yang N, Li JH, Meng JQ, Zhang QS (2019) Surface modification of AO-PAN@OHec nanofiber membranes with amino acid for antifouling and hemocompatible properties. Appl Surf Sci 475:934–941. https://doi.org/10.1016/j.apsusc.2018.12.179

    Article  CAS  Google Scholar 

  27. Aksoy OE, Ates B, Cerkez I (2017) Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. J Mater Sci 52:10013–10022. https://doi.org/10.1007/s10853-017-1240-1

    Article  CAS  Google Scholar 

  28. Xu SG, Liu YF, Yu Y, Zhang XT, Li YF (2020) PAN/PVDF chelating membrane for simultaneous removal of heavy metal and organic pollutants from mimic industrial wastewater. Sep Purif Technol 235:116185. https://doi.org/10.1016/j.seppur.2019.116185

    Article  CAS  Google Scholar 

  29. Kampalanonwat P, Supaphol P (2011) Preparation of hydrolyzed electrospun polyacrylonitrile fiber mats as chelating substrates: a case study on copper (II) ions. Ind Eng Chem Re 50:11912–11921. https://doi.org/10.1021/ie200504c

    Article  CAS  Google Scholar 

  30. Zhang G, Meng H, Ji S (2009) Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance. Desalination 242:313–324. https://doi.org/10.1016/j.desal.2008.05.010

    Article  CAS  Google Scholar 

  31. Pan SF, Dong Y, Zheng YM, Zhong LB, Yuan ZH (2017) Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: preparation, characterization and application for simulated antibiotic waste water treatment. J Membr Sci 523:205–215. https://doi.org/10.1016/j.memsci.2016.09.045

    Article  CAS  Google Scholar 

  32. Shi Q, Su Y, Chen W, Peng J, Nie L, Zhang L, Jiang Z (2011) Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. J Memb Sci 366:398–404. https://doi.org/10.1016/j.memsci.2010.10.032

    Article  CAS  Google Scholar 

  33. Latour RA (2005) Biomaterials: protein-surface interactions [M]. Encycl Biomater Biomed Eng 1:270–84

    Google Scholar 

  34. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595. https://doi.org/10.1007/978-1-4471-3454-1_25

    Article  CAS  PubMed  Google Scholar 

  35. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173. https://doi.org/10.1021/ja042898c

    Article  CAS  PubMed  Google Scholar 

  36. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. https://doi.org/10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  37. Chan R, Chen V (2004) Characterization of protein fouling on membranes: opportunities and challenges. J Membr Sci 242:169–188. https://doi.org/10.1016/j.memsci.2004.01.029

    Article  CAS  Google Scholar 

  38. Xu LC, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28:3273–3283. https://doi.org/10.1016/j.biomaterials.2007.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi LB, Liu ZY, Wang N, Hu YX (2018) Facile and efficient in situ synthesis of silver nanoparticles on diverse filtration membrane surfaces for antimicrobial performance. Appl Surf Sci 456:95–103. https://doi.org/10.1016/j.apsusc.2018.06.066

    Article  CAS  Google Scholar 

  40. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620. https://doi.org/10.1021/la010384m

    Article  CAS  Google Scholar 

  41. Ahmed HA, Mubarak MF (2021) Adsorption of cationic dye using a newly synthesized CaNiFe2O4/chitosan magnetic nanocomposite: kinetic and isotherm studies. J Polym Environ 29:1835–1851. https://doi.org/10.1007/s10924-020-01989-0

    Article  CAS  Google Scholar 

  42. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  43. Shi W, Cao H, Song C, Jiang H, Wang J, Jiang S, Tu J, Ge D (2010) Poly (pyrrole-3-carboxylic acid)-alumina composite membrane for affinity adsorption of bilirubin. J Membr Sci 353:151–158. https://doi.org/10.1016/j.memsci.2010.02.048

    Article  CAS  Google Scholar 

  44. Denizli A, Kocakulak M, Piskin E (1998) Bilirubin removal from human plasma in a packed-bed column system with dye-affinity microbeads. J Chromatogr B Biomed Sci Appl 707:25–31. https://doi.org/10.1016/S0378-4347(97)00612-9

    Article  CAS  PubMed  Google Scholar 

  45. Rustemeier O, Killmann E (1997) Electrostatic interactions and stability of poly-L-lysine covered polystyrene latex particles investigated by dynamic light scattering. J Colloid Interf Sci 190:360–370. https://doi.org/10.1006/jcis.1997.4875

    Article  CAS  PubMed  Google Scholar 

  46. El-saied HAa, Motawea EAT, (2020) Optimization and adsorption behavior of nanostructured NiFe2O4/Poly AMPS grafted biopolymer. J Polym Environ 28:2335–2351. https://doi.org/10.1007/s10924-020-01774-z

    Article  CAS  Google Scholar 

  47. Jiang X, Zhou DX, Huang XL, Zhao WF, Zhao CS (2017) Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal. J Colloid Interf Sci 504:214–222. https://doi.org/10.1016/j.jcis.2017.05.039

    Article  CAS  Google Scholar 

  48. Guo LM, Zhang JM, He QJ, Zhang LX, Zhao JJ, Zhu ZY, Wu W, Zhang J, Shi JL (2010) Preparation of millimeter-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chem Commun 46:7127–7129. https://doi.org/10.1039/c0cc02060e

    Article  CAS  Google Scholar 

  49. Peng ZH, Yang Y, Luo JY, Nie CX, Ma L, Cheng C, Zhao CS (2016) Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomater Sci 4:1392–1401. https://doi.org/10.1039/c6bm00328a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National College Student Innovation and Entrepreneurship Training Program (201810058053). We would like to thank the Analytical & Testing Center of Tiangong University for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

ML-designed and experimented, collected data, formal analysis, and wrote the manuscript; WZ-designed the experiment, corrected and revised the manuscript; PZ-designed and guided Cytocompatibility and hemocompatibility section; LY-revised the article; HL and JZ-experimented and collected data; WZ and XM-material preparation.

Corresponding author

Correspondence to Wen Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval

Not applicable for that section.

Consent to Participate

Not applicable for that section.

Consent for Publication

Not applicable for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, W., Zhang, P. et al. Enhanced Hemocompatibility of Lysine Grafted Polyacrylonitrile Electrospun Nanofiber Membranes as a Potential Bilirubin Adsorption in Hemoperfusion. J Polym Environ 31, 1553–1567 (2023). https://doi.org/10.1007/s10924-022-02704-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02704-x

Keywords

Navigation