Skip to main content
Log in

Highly Efficient Removal of Rhodamine B Dye Using Nanocomposites Made from Cotton Seed Oil-Based Polyurethane and Silylated Nanocellulose

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biobased polyurethane nanocellulose nanocomposites were synthesized from cottonseed oil as the source for the biopolyol. The prepared composites were used to study the adsorption of Rhodamine B dye from water. Low functional polyol was derived from cottonseed oil using one-pot synthesis method. Nanocellulose was derived from pineapple leaves and then it was surface-functionalized via silylation. In-situ polymerization technique was used to incorporate the silylated nanocellulose into the polyurethane matrix. The prepared polyol from cottonseed oil was found to have an OH functionality of 2 which was confirmed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance (NMR) spectroscopy. Low functionality of polyol is the key factor in achieving flexible porous polyurethane. The silylated nanocellulose, polyurethane, and composites were characterized by FT-IR, X-ray diffraction analysis (XRD), and Scanning electron microscopy (SEM). The adsorption parameters were optimized using the Taguchi methodology and the adsorption efficiency was determined by carrying out adsorption at optimized parameters (5 wt% loading of silylated nanocellulose, pH 9, and temperature of 30 °C) for 8 h. Studies showed that the prepared composite has a high adsorption efficiency of 597 mg/g of silylated nanocellulose towards Rh-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Abbreviations

FT-IR:

Fourier transform–infrared spectroscopy

NMR:

Nuclear magnetic resonance

XRD:

X-ray diffraction analysis

SEM:

Scanning electron microscopy

FESEM:

Field emission scanning electron microscopy

Rh-B:

Rhodamine B

APTES:

3-Aminopropyltriethoxysilane

MDI:

Methylene diphenyl diisocyanate

DABCO:

1,4-Diazabicyclo [2] Octane

PEG-6000:

Polyethylene glycol

CSO:

Cottonseed oil

FECSP:

Formiated epoxy cottonseed polyol

References

  1. Zhao W, Chen IW, Huang F (2019) Toward large-scale water treatment using nanomaterials. Nano Today. https://doi.org/10.1016/j.nantod.2019.05.003

    Article  Google Scholar 

  2. Boelee E, Geerling G, van der Zaan B et al (2019) Water and health: from environmental pressures to integrated responses. Acta Trop 193:217–226. https://doi.org/10.1016/j.actatropica.2019.03.011

    Article  PubMed  Google Scholar 

  3. Kumari P, Alam M, Siddiqi WA (2019) Usage of nanoparticles as adsorbents for waste water treatment: an emerging trend. Sustain Mater Technol. https://doi.org/10.1016/j.susmat.2019.e00128

    Article  Google Scholar 

  4. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water−a comprehensive review. Resour-effic Technol 2:175–184. https://doi.org/10.1016/j.reffit.2016.09.004

    Article  Google Scholar 

  5. Ali I, Gupta VK (2007) Adv Water Treat Adsorp Technol 1:2661–2667. https://doi.org/10.1038/nprot.2006.370

    Article  CAS  Google Scholar 

  6. Verdolotti L, Di Caprio MR, Lavorgna M, Buonocore GG (2017) Polyurethane nanocomposite foams: correlation between nanofillers, porous morphology, and structural and functional properties. Polyurethane Polym. https://doi.org/10.1016/B978-0-12-804065-2.00009-7

    Article  Google Scholar 

  7. Haryanto Mansoob Khan, M, (2018) Polymer nanocomposite application in sorption processes for removal of environmental contaminants. Polymer-based nanocomposites for energy and environmental applications. Elsevier, University of Ottawa Press, pp 491–505

    Chapter  Google Scholar 

  8. Bassyouni M, Abdel-Aziz MH, Zoromba MS et al (2019) A Review of polymeric nanocomposite membranes for water purification. J Ind Eng Chem 73:19–46

    Article  CAS  Google Scholar 

  9. Machado Centenaro GSN, Facin BR, Valério A et al (2017) Application of polyurethane foam chitosan-coated as a low-cost adsorbent in the effluent treatment. J Water Process Eng 20:201–206. https://doi.org/10.1016/J.JWPE.2017.11.008

    Article  Google Scholar 

  10. Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C (2014) Synthesis and characterisation of potentially biodegradable polyurethane adhesives from soybased. Polyols 5:99–114

    Google Scholar 

  11. Zhang C, Madbouly SA, Kessler MR (2015) Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 7:1226–1233. https://doi.org/10.1021/am5071333

    Article  CAS  PubMed  Google Scholar 

  12. Ma H, Hsiao BS, Chu B (2011) Ultrafine cellulose nanofibers as efficient adsorbents for removal of uo22+ in water. ACS Macro Lett 1:213–216. https://doi.org/10.1021/MZ200047Q

    Article  PubMed  Google Scholar 

  13. Batmaz R, Mohammed N, Zaman M et al (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665. https://doi.org/10.1007/s10570-014-0168-8

    Article  CAS  Google Scholar 

  14. Köse K, Mavlan M, Youngblood JP (2020) Applications and impact of nanocellulose based adsorbents. Cellulose 27:2967–2990

    Article  Google Scholar 

  15. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197. https://doi.org/10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  16. Duarah R, Karak N (2019) Hyperbranched polyurethane/reduced carbon dot-zinc oxide nanocomposite-mediated solar-assisted photocatalytic degradation of organic contaminant: an approach towards environmental remediation. Chem Eng J 370:716–728. https://doi.org/10.1016/J.CEJ.2019.03.248

    Article  CAS  Google Scholar 

  17. Góes MM, Keller M, Masiero Oliveira V et al (2016) Polyurethane foams synthesized from cellulose-based wastes: kinetics studies of dye adsorption. Ind Crops Prod 85:149–158. https://doi.org/10.1016/j.indcrop.2016.02.051

    Article  CAS  Google Scholar 

  18. Li X, Li J, Sun X et al (2015) Preparation and malachite green adsorption behavior of polyurethane/chitosan composite foam. J Cell Plast 51:373–386. https://doi.org/10.1177/0021955X14542538

    Article  CAS  Google Scholar 

  19. Zia F, Zia KM, Zuber M et al (2015) Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym 134:784–798. https://doi.org/10.1016/j.carbpol.2015.08.034

    Article  CAS  PubMed  Google Scholar 

  20. Monteavaro LL, da Silva EO, Costa APO et al (2005) Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization. J Am Oil Chem Soc 82:365–371. https://doi.org/10.1007/s11746-005-1079-0

    Article  CAS  Google Scholar 

  21. Siji Vargheese, Dr. Jineesh A.G DrAPN (2018) Development of functionalized nanocellulose based cross-linked gel for water purification. MS Ramaiah University of Applied Sciences

  22. Chandrashekhar A, Gopi JA, Prabhu TN (2020) Development of flexible bio based porous polyurethane nanocellulose composites for wastewater treatment. In: AIP Conference Proceedings AIP Inc.

  23. Khanjanzadeh H, Behrooz R, Bahramifar N et al (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136

    Article  CAS  PubMed  Google Scholar 

  24. Oliviero M, Verdolotti L, Stanzione M et al (2017) Bio-based flexible polyurethane foams derived from succinic polyol: mechanical and acoustic performances. J Appl Polym Sci 134:45113. https://doi.org/10.1002/app.45113

    Article  CAS  Google Scholar 

  25. Gopi JA, Nando GB (2012) Optimization of the processing parameters in melt blending of thermoplastic polyurethane and poly dimethyl siloxane rubber. J Elastomers Plast 44:189–204. https://doi.org/10.1177/0095244311425998

    Article  CAS  Google Scholar 

  26. Dinda S, Patwardhan AV, Goud VV, Pradhan NC (2008) Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour Technol 99:3737–3744. https://doi.org/10.1016/J.BIORTECH.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  27. Abril-Milán D, Valdés O, Mirabal-Gallardo Y et al (2018) Preparation of renewable bio-polyols from two species of colliguaja for rigid polyurethane foams. Materials. https://doi.org/10.3390/ma11112244

    Article  PubMed  PubMed Central  Google Scholar 

  28. ASTM D7253-16 standard test method for polyurethane raw materials: determination of acidity as acid number for polyether polyols. https://www.astm.org/Standards/D7253.htm. Accessed 27 Sept 2020

  29. Alagi P, Choi YJ, Seog J, Hong SC (2016) Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Ind Crops Prod 87:78–88. https://doi.org/10.1016/J.INDCROP.2016.04.027

    Article  CAS  Google Scholar 

  30. Shah SN, Mahesar SA, Abro KA et al (2017) FTIR Characterization and physicochemical evaluation of cottonseed oil. Pak J Anal Environ Chem 18:46–53

    Article  CAS  Google Scholar 

  31. Xia W, Budge SM, Lumsden MD (2016) 1H-NMR characterization of epoxides derived from polyunsaturated fatty acids. J Am Oil Chem Soc 93:467–478. https://doi.org/10.1007/s11746-016-2800-2

    Article  CAS  Google Scholar 

  32. Fang Z, Qiu C, Ji D et al (2019) Development of high-performance biodegradable rigid polyurethane foams using full modified soy-based polyols. J Agric Food Chem 67:2220–2226. https://doi.org/10.1021/acs.jafc.8b05342

    Article  CAS  PubMed  Google Scholar 

  33. Xue B, Wen J, Sun R (2014) Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization. ACS Sustain Chem Eng 2:1474–1480. https://doi.org/10.1021/sc5001226

    Article  CAS  Google Scholar 

  34. Ranote S, Kumar D, Kumari S et al (2019) Green synthesis of moringa oleifera gum-based bifunctional polyurethane foam braced with ash for rapid and efficient dye removal. Chem Eng J 361:1586–1596. https://doi.org/10.1016/J.CEJ.2018.10.194

    Article  CAS  Google Scholar 

  35. Cherian BM, Leão AL, de Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. https://doi.org/10.1016/j.carbpol.2010.03.046

    Article  CAS  Google Scholar 

  36. Fareez IM, Ibrahim NA, Wan Yaacob WMH et al (2018) Characteristics of cellulose extracted from josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25:4407–4421. https://doi.org/10.1007/s10570-018-1878-0

    Article  CAS  Google Scholar 

  37. Tanpichai S, Witayakran S, Boonmahitthisud A (2019) Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.102836

    Article  Google Scholar 

  38. Ravindran L, M.S. S, Thomas S, (2019) Novel processing parameters for the extraction of cellulose nanofibres (cnf) from environmentally benign pineapple leaf fibres (palf): structure-property relationships. Int J Biol Macromol 131:858–870. https://doi.org/10.1016/j.ijbiomac.2019.03.134

    Article  CAS  PubMed  Google Scholar 

  39. Balakrishnan P, Sreekala MS, Kunaver M et al (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188. https://doi.org/10.1016/j.carbpol.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  40. Hettegger H, Sumerskii I, Sortino S et al (2015) Silane meets click chemistry: towards the functionalization of wet bacterial cellulose sheets. Chemsuschem 8:680–687. https://doi.org/10.1002/cssc.201402991

    Article  CAS  PubMed  Google Scholar 

  41. Pillai PKS, Li S, Bouzidi L, Narine SS (2016) Metathesized palm oil polyol for the preparation of improved bio-based rigid and flexible polyurethane foams. Ind Crops Prod 83:568–576. https://doi.org/10.1016/j.indcrop.2015.12.068

    Article  CAS  Google Scholar 

  42. Sultan M (2017) Polyurethane for removal of organic dyes from textile wastewater. Environ Chem Lett 15:347–366. https://doi.org/10.1007/s10311-016-0597-8

    Article  CAS  Google Scholar 

  43. Zhang C, Vennerberg D, Kessler MR (2015) In situ synthesis of biopolyurethane nanocomposites reinforced with modified multiwalled carbon nanotubes. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.42515

    Article  CAS  Google Scholar 

  44. Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145. https://doi.org/10.1039/b910517d

    Article  CAS  Google Scholar 

  45. Sittinun A, Pisitsak P, Manuspiya H et al (2020) Utilization of palm olein-based polyol for polyurethane foam sponge synthesis: potential as a sorbent material. J Polym Environ 28:3181–3191. https://doi.org/10.1007/S10924-020-01834-4/FIGURES/9

    Article  CAS  Google Scholar 

  46. Thakur S, Chaudhary J, Thakur A et al (2022) Highly efficient poly(acrylic acid-co-aniline) grafted itaconic acid hydrogel: application in water retention and adsorption of rhodamine B dye for a sustainable environment. Chemosphere. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134917

    Article  PubMed  Google Scholar 

  47. Bai Q, Xiong Q, Li C et al (2017) Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes. Cellulose 24:4275–4289. https://doi.org/10.1007/S10570-017-1410-Y/FIGURES/11

    Article  CAS  Google Scholar 

  48. Xiao W, Garba ZN, Sun S et al (2020) Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J Clean Prod 253:119989. https://doi.org/10.1016/J.JCLEPRO.2020.119989

    Article  CAS  Google Scholar 

  49. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M (2019) Adsorption of rhodamine B dye from aqueous solution onto acid treated banana peel: response surface methodology, kinetics and isotherm studies. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0216878

    Article  PubMed  PubMed Central  Google Scholar 

  50. Postai DL, Demarchi CA, Zanatta F et al (2016) Adsorption of rhodamine B and methylene blue dyes using waste of seeds of aleurites moluccana, a low cost adsorbent. Alex Eng J 55:1713–1723. https://doi.org/10.1016/J.AEJ.2016.03.017

    Article  Google Scholar 

  51. Chandrashekhar A, Gopi JA, Prabhu TN (2020) Development of flexible bio based porous polyurethane nanocellulose composites for wastewater treatment. AIP Conf Proc 2274:040002. https://doi.org/10.1063/5.0022888

    Article  CAS  Google Scholar 

  52. Khamparia S, Jaspal D (2016) Investigation of adsorption of rhodamine B onto a natural adsorbent argemone mexicana. J Environ Manag 183:786–793. https://doi.org/10.1016/J.JENVMAN.2016.09.036

    Article  CAS  Google Scholar 

  53. Cui W, Kang X, Zhang X, Cui X (2019) Gel-like ZnO/Zr-MOF(bpy) nanocomposite for highly efficient adsorption of rhodamine B dye from aqueous solution. J Phys Chem Solids 134:165–175. https://doi.org/10.1016/J.JPCS.2019.06.004

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AC conducted all experimental work and prepared original manuscript draft, SV contributed for preparation of nanocellulose, JGV contributed in the synthesis of polyurethanes, JAG supervised the research, initial plan and contributed in writing the manuscript, TNP contributed in the research plan, conceptualization and editing the manuscript. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Corresponding author

Correspondence to T. Niranjana Prabhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekar, A., Vargheese, S., Vijayan, J.G. et al. Highly Efficient Removal of Rhodamine B Dye Using Nanocomposites Made from Cotton Seed Oil-Based Polyurethane and Silylated Nanocellulose. J Polym Environ 30, 4999–5011 (2022). https://doi.org/10.1007/s10924-022-02567-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02567-2

Keywords

Navigation