Skip to main content
Log in

Optimization and Characterization of Bioactive Biocomposite Film Based on Orange Peel Incorporated with Gum Arabic Reinforced by Cr2O3 Nanoparticles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this paper, the effect of adding gum arabic at levels of 0–5%, and chromium oxide nanoparticles (Cr2O3 NPs) at levels of 0–3%, were optimized on orange peel-based films by response surface methodology. The obtained results reveal a significant increase in water vapor permeability, weight loss, tensile strength, and Young's modulus of film samples by increasing the percentage of both gum and nanoparticles (p < 0.05). Moreover, the addition of gum arabic and Cr2O3 NPs decreases the thickness, water-solubility, L*, a*, b* indexes while increasing the elongation to the breaking point. Furthermore, the moisture content of the film samples was decreased by the addition of nanoparticles, however, the addition of gum arabic increased this parameter. The obtained results from the morphology of the samples indicated an increase in both roughness and cracks by increasing the percentage of nanoparticles as well as creating a smooth surface with the addition of gum arabic. Besides, the results of Fourier-transform infrared spectroscopy revealed no new peak in the prepared samples, as compared to the control sample. The results of X-ray diffraction indicated that the addition of gum arabic and nanoparticles simultaneously caused the formation of new crystals and increasing the crystallinity of the films. Based on Thermogravimetric analysis results, the thermal stability of films containing the nanoparticles increased, as compared to the control sample. In the meantime, the addition of gum and nanoparticles increased the antimicrobial properties of the film samples, as compared to the control. Overall, those films created by the orange peel including gum arabic and Cr2O3 NPs could enhance the mechanical properties and water vapor permeability of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gholam-Zhiyan A, Amiri S, Rezazadeh-Bari M, Pirsa S (2021) Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (MPC)-based edible film. J Packag Technol Res 5(1):11–22

    Article  Google Scholar 

  2. Gennadios A (ed) (2002) Protein-based films and coatings. CRC Press, Boca Raton

    Google Scholar 

  3. Giménez B, Gómez-Estaca J, Alemán A, Gómez-Guillén MC, Montero MP (2009) Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food Hydrocoll 23(5):1322–1327

    Article  CAS  Google Scholar 

  4. Pirsa S, Aghbolagh Sharifi K (2020) A review of the applications of bioproteins in the preparation of biodegradable films and polymers. J Chem Lett 1(2):47–58

    Google Scholar 

  5. Amiri S, Rezazad Bari L, Malekzadeh S, Amiri S, Mostashari P, Ahmadi Gheshlagh P (2021) Effect of Aloe vera gel-based active coating incorporated with catechin nanoemulsion and calcium chloride on postharvest quality of fresh strawberry fruit. J Food Process Preserv. https://doi.org/10.1111/jfpp.15960

    Article  Google Scholar 

  6. Amiri S, Saray FR, Rezazad-Bari L, Pirsa S (2021) Optimization of extraction and characterization of physicochemical, structural, thermal, and antioxidant properties of mucilage from Hollyhock’s root: a functional heteropolysaccharide. J Food Measur Character 15(3):2889–2903

    Article  Google Scholar 

  7. Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol 63(1):10–21

    Article  CAS  PubMed  Google Scholar 

  8. Sciarini LS, Maldonado F, Ribotta PD, Pérez GT, León AE (2009) Chemical composition and functional properties of Gleditsia triacanthos gum. Food Hydrocoll 23(2):306–313

    Article  CAS  Google Scholar 

  9. Xu T, Gao C, Feng X, Huang M, Yang Y, Shen X, Tang X (2019) Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohyd Polym 217:116–125

    Article  CAS  Google Scholar 

  10. Shanthilal J, Bhattacharya S (2017) Frying of rice flour dough strands containing gum Arabic: texture, sensory attributes and microstructure of products. J Food Sci Technol 54(5):1293–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baron RD, Pérez LL, Salcedo JM, Córdoba LP, do Amaral Sobral PJ (2017) Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. Int J Biol Macromol 98:676–683

    Article  CAS  PubMed  Google Scholar 

  12. Taghavi Kevij H, Salami M, Mohammadian M, Khodadadi M, Emam-Djomeh Z (2021) Mechanical, physical, and bio-functional properties of biopolymer films based on gelatin as affected by enriching with orange peel powder. Polym Bull 78(8):4387–4402

    Article  CAS  Google Scholar 

  13. Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S (2021) Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag Shelf Life 30:100742

    Article  Google Scholar 

  14. Rathinavel S, Saravanakumar SS (2020) Development and analysis of poly vinyl alcohol/orange peel powder biocomposite films. J Nat Fibers 18:2045–2054

    Article  CAS  Google Scholar 

  15. Mascolo C, Marrone R, Palma A, Palma G (2013) Nutritional value of fish species. J Nutr Ecol Food Res 1(3):219–225

    Google Scholar 

  16. Asdagh A, Pirsa S (2020) Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. Int J Biol Macromol 165:156–168

    Article  CAS  PubMed  Google Scholar 

  17. Pirsa S, Farshchi E, Roufegarinejad L (2020) Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. J Polym Environ 28(12):3154–3163

    Article  CAS  Google Scholar 

  18. Hassannia-Kolaee M, Khodaiyan F, Pourahmad R, Shahabi-Ghahfarrokhi I (2016) Development of ecofriendly bionanocomposite: whey protein isolate/pullulan films with nano-SiO2. Int J Biol Macromol 86:139–144

    Article  CAS  PubMed  Google Scholar 

  19. Ghamari MA, Amiri S, Rezazadeh-Bari M, Rezazad-Bari L (2021) Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym Bull. https://doi.org/10.1007/s00289-021-03550-y

    Article  Google Scholar 

  20. Zhu JY, Tang CH, Yin SW, Yang XQ (2018) Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohyd Polym 181:727–735

    Article  CAS  Google Scholar 

  21. Jouki M, Khazaei N, Ghasemlou M, HadiNezhad M (2013) Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohyd Polym 96(1):39–46

    Article  CAS  Google Scholar 

  22. Wong SM, Zulkifli MZA, Nordin D, Teow YH (2021) Synthesis of cellulose/nano-hydroxyapatite composite hydrogel absorbent for removal of heavy metal ions from palm oil mill effluents. J Polym Environ 29:1–14

    Google Scholar 

  23. Salas-Valero LM, Tapia-Blácido DR, Menegalli FC (2015) Biofilms based on canihua flour (Chenopodium Pallidicaule): design and characterization. Quim Nova 38(1):14–21

    CAS  Google Scholar 

  24. Bazargani-Gilani B, Aliakbarlu J, Tajik H (2015) Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov Food Sci Emerg Technol 29:280–287

    Article  CAS  Google Scholar 

  25. Bahrami A, Mokarram RR, Khiabani MS, Ghanbarzadeh B, Salehi R (2019) Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. Int J Biol Macromol 129:1103–1112

    Article  CAS  PubMed  Google Scholar 

  26. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264

    Article  CAS  PubMed  Google Scholar 

  27. Li LH, Deng JC, Deng HR, Liu ZL, Li XL (2010) Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem Eng J 160(1):378–382

    Article  CAS  Google Scholar 

  28. Pirsa S (2020) Biodegradable film based on pectin/Nano-clay/methylene blue: structural and physical properties and sensing ability for measurement of vitamin C. Int J Biol Macromol 163:666–675

    Article  CAS  PubMed  Google Scholar 

  29. Rezaei M, Pirsa S, Chavoshizadeh S (2019) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30:2654

    Article  CAS  Google Scholar 

  30. Sui C, Zhang W, Ye F, Liu X, Yu G (2016) Preparation, physical, and mechanical properties of soy protein isolate/guar gum composite films prepared by solution casting. J Appl Polym Sci. https://doi.org/10.1002/app.43382

    Article  Google Scholar 

  31. Khoirunnisa AR, Joni IM, Panatarani C, Rochima E, Praseptiangga D (2018) UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with ZnO nanoparticles. In AIP conference proceedings, vol 1927, no. 1. AIP Publishing LLC, p 030041

  32. Tunç S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48(3):414–424

    Article  CAS  Google Scholar 

  33. Baek SK, Song KB (2018) Development of Gracilaria vermiculophylla extract films containing zinc oxide nanoparticles and their application in smoked salmon packaging. LWT 89:269–275

    Article  CAS  Google Scholar 

  34. Anaya-Esparza LM, Ruvalcaba-Gómez JM, Maytorena-Verdugo CI, González-Silva N, Romero-Toledo R, Aguilera-Aguirre S, Pérez-Larios A (2020) Chitosan-TiO2: a versatile hybrid composite. Materials 13(4):811

    Article  CAS  PubMed Central  Google Scholar 

  35. Jabraili A, Pirsa S, Pirouzifard MK, Amiri S (2021) Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. J Polym Environ 29:2557–2571

    Article  CAS  Google Scholar 

  36. He Q, Zhang Y, Cai X, Wang S (2016) Fabrication of gelatin–TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int J Biol Macromol 84:153–160

    Article  CAS  PubMed  Google Scholar 

  37. Farshchi E, Pirsa S, Roufegarinejad L, Alizadeh M, Rezazad M (2019) Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohyd Polym 216:189–196

    Article  CAS  Google Scholar 

  38. Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    Article  CAS  PubMed  Google Scholar 

  39. Oun AA, Rhim JW (2017) Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53

    Article  CAS  Google Scholar 

  40. Balasubramanian R, Kim SS, Lee J, Lee J (2019) Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. Int J Biol Macromol 123:1020–1027

    Article  CAS  PubMed  Google Scholar 

  41. Martins JT, Bourbon AI, Pinheiro AC, Souza BW, Cerqueira MA, Vicente AA (2013) Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: physical and antimicrobial properties. Food Bioprocess Technol 6(8):2081–2092

    Article  CAS  Google Scholar 

  42. Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S (2017) Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll 63:488–495

    Article  CAS  Google Scholar 

  43. Choo K, Ching YC, Chuah CH, Julai S, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9(8):644

    Article  PubMed Central  CAS  Google Scholar 

  44. Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111(3):485–492

    Article  CAS  PubMed  Google Scholar 

  45. Lozano-Navarro JI, Díaz-Zavala NP, Velasco-Santos C, Melo-Banda JA, Páramo-García U, Paraguay-Delgado F et al (2018) Chitosan-starch films with natural extracts: physical, chemical, morphological and thermal properties. Materials 11(1):120

    Article  PubMed Central  CAS  Google Scholar 

  46. Shankar S, Teng X, Rhim JW (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohyd Polym 114:484–492

    Article  CAS  Google Scholar 

  47. Slavutsky AM, Bertuzzi MA, Armada M, García MG, Ochoa NA (2014) Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocoll 35:270–278

    Article  CAS  Google Scholar 

  48. Genskowsky E, Puente LA, Pérez-Álvarez JA, Fernandez-Lopez J, Muñoz LA, Viuda-Martos M (2015) Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT-Food Sci Technol 64(2):1057–1062

    Article  CAS  Google Scholar 

  49. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SP and SG: Conceptualization, methodology. SG and SA: Data analysis, writing-original draft preparation. SG: investigation. PA: antimicrobial test. SP and SA: supervision. SA: software, validation. SG, SP and SA: writing-reviewing and editing.

Corresponding authors

Correspondence to Sajad Pirsa or Saber Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemizad, S., Pirsa, S., Amiri, S. et al. Optimization and Characterization of Bioactive Biocomposite Film Based on Orange Peel Incorporated with Gum Arabic Reinforced by Cr2O3 Nanoparticles. J Polym Environ 30, 2493–2506 (2022). https://doi.org/10.1007/s10924-021-02357-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02357-2

Keywords

Navigation