Skip to main content

Advertisement

Log in

Green Propolis Extract as an Antioxidant Additive for Active Films Based on Sodium Alginate and Hydrolyzed Collagen

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Herein, sodium alginate (SA) and hydrolyzed collagen (HC) blend films incorporating propolis extract (PE) (1–4 wt%) were prepared. A thorough morphological, structural and property-related evaluation has been provided. Micro-structurally, the incorporation of low PE concentrations resulted in more uniform SA/HC films. The FTIR results confirmed no modifications in the film’s functional groups, and the crystallinity degrees (XRD) of the films ranged from 4.1 to 5.6%. The incorporation of PE caused an increase in tensile strength, from 7.9 MPa (SA/HC) to 16.3 MPa (SA/HC/PE3%). Additionally, PE incorporation reduced the water affinity of the films, leading to a reduction in their moisture content. A type III moisture sorption isotherm was observed for all films at 25 °C, and the Smith’s model provided the best fit, suggesting that SA, HC and PE presented good miscibility, reducing the availability of functional groups for adsorption of water molecules. More importantly, the incorporation of PE improved the antioxidant activity of the films from 3.43% (SA/HC) to 22.5% (SA/HC/PE4%), and provided an exceptional UV light blocking ability. Overall, green PE can be considered an interesting option for the enhancement of SA/HC bioactive film performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li T, Xia N, Xu L et al (2021) Preparation, characterization and application of SPI-based blend film with antioxidant activity. Food Packag Shelf Life 27:100614. https://doi.org/10.1016/j.fpsl.2020.100614

    Article  CAS  Google Scholar 

  2. Li Y, Chen K, Yang Q et al (2021) Development and characterization of novel antioxidant films based on chitosan and Maillard reaction products. LWT-Food Sci Technol 141:110886. https://doi.org/10.1016/j.lwt.2021.110886

    Article  CAS  Google Scholar 

  3. Vianna TC, Marinho CO, Júnior LM et al (2021) Essential oils as additives in active starch-based food packaging films: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.05.170

    Article  PubMed  Google Scholar 

  4. Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR (2021) Furcellaran: an innovative biopolymer in the production of films and coatings. Carbohydr Polym 252:117221. https://doi.org/10.1016/j.carbpol.2020.117221

    Article  CAS  PubMed  Google Scholar 

  5. Marangoni Júnior L, da Silva RG, Vieira RP, Alves RMV (2021) Water vapor sorption and permeability of sustainable alginate/collagen/SiO2 composite films. LWT 152:112261. https://doi.org/10.1016/j.lwt.2021.112261

    Article  CAS  Google Scholar 

  6. Michelin M, Marques AM, Pastrana LM et al (2020) Carboxymethyl cellulose-based films: effect of organosolv lignin incorporation on physicochemical and antioxidant properties. J Food Eng 285:110107. https://doi.org/10.1016/j.jfoodeng.2020.110107

    Article  CAS  Google Scholar 

  7. Mohamed SAA, El-Sakhawy M, El-Sakhawy MA-M (2020) Polysaccharides, protein and lipid -based natural edible films in food packaging : a review. Carbohydr Polym 238:116178. https://doi.org/10.1016/j.carbpol.2020.116178

    Article  CAS  PubMed  Google Scholar 

  8. Marangoni Júnior L, Fozzatti CR, Jamróz E et al (2022) Biopolymer-based films from sodium alginate and citrus pectin reinforced with SiO2. Mater 15:3881

    Article  Google Scholar 

  9. Marinho CO, Vianna TC, Cecci RRR et al (2022) Effect of water kefir grain biomass on chitosan film properties. Mater Today Commun 32:103902. https://doi.org/10.1016/j.mtcomm.2022.103902

    Article  CAS  Google Scholar 

  10. Senturk Parreidt T, Müller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7:170

    Article  PubMed  Google Scholar 

  11. Marangoni Júnior L, da Silva RG, Anjos CAR et al (2021) Effect of low concentrations of SiO2 nanoparticles on the physical and chemical properties of sodium alginate-based films. Carbohydr Polym 269:118286. https://doi.org/10.1016/j.carbpol.2021.118286

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Wu A, Yang M et al (2021) Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control 126:108063. https://doi.org/10.1016/j.foodcont.2021.108063

    Article  CAS  Google Scholar 

  13. Yang L, Yang J, Qin X et al (2020) Ternary composite films with simultaneously enhanced strength and ductility: effects of sodium alginate-gelatin weight ratio and graphene oxide content. Int J Biol Macromol 156:494–503. https://doi.org/10.1016/j.ijbiomac.2020.04.057

    Article  CAS  PubMed  Google Scholar 

  14. Pinto TDS, Rodrigues PN, Marinho LE et al (2019) Self-assembled hybrid nanocomposite films of carbon dots and hydrolyzed collagen. Mater Chem Phys 230:44–53. https://doi.org/10.1016/j.matchemphys.2019.03.060

    Article  CAS  Google Scholar 

  15. Chuysinuan P, Thanyacharoen T, Thongchai K et al (2020) Preparation of chitosan/hydrolyzed collagen/hyaluronic acid based hydrogel composite with caffeic acid addition. Int J Biol Macromol 162:1937–1943. https://doi.org/10.1016/j.ijbiomac.2020.08.139

    Article  CAS  PubMed  Google Scholar 

  16. Walczak M, Michalska-Sionkowska M, Kaczmarek B, Sionkowska A (2020) Surface and antibacterial properties of thin films based on collagen and thymol. Mater Today Commun 22:100949. https://doi.org/10.1016/j.mtcomm.2020.100949

    Article  CAS  Google Scholar 

  17. Valencia GA, Luciano CG, Lourenço RV et al (2019) Morphological and physical properties of nano-biocomposite films based on collagen loaded with laponite®. Food Packag Shelf Life 19:24–30. https://doi.org/10.1016/j.fpsl.2018.11.013

    Article  Google Scholar 

  18. Reyes LM, Landgraf M, Sobral PJA (2021) Gelatin-based films activated with red propolis ethanolic extract and essential oils. Food Packag Shelf Life 27:100607. https://doi.org/10.1016/j.fpsl.2020.100607

    Article  CAS  Google Scholar 

  19. Correa-Pacheco ZN, Bautista-Baños S, de LorenaRamos-García M et al (2019) Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Prog Org Coatings 137:105326. https://doi.org/10.1016/j.porgcoat.2019.105326

    Article  CAS  Google Scholar 

  20. Moreno MA, Vallejo AM, Ballester A-R et al (2020) Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocoll 107:105973. https://doi.org/10.1016/j.foodhyd.2020.105973

    Article  CAS  Google Scholar 

  21. Machado BA, Silva RP, Barreto GD et al (2016) Chemical composition and biological activity of extracts obtained by supercritical extraction and ethanolic extraction of brown, green and red propolis derived from different geographic regions in Brazil. PLoS ONE 11:e0145954

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cruz AIC, da Costa M, Mafra JF et al (2021) A sodium alginate bilayer coating incorporated with green propolis extract as a powerful tool to extend Colossoma macropomum fillet shelf-life. Food Chem 355:129610. https://doi.org/10.1016/j.foodchem.2021.129610

    Article  CAS  PubMed  Google Scholar 

  23. Cavalaro RI, da Cruz RG, Dupont S et al (2019) In vitro and in vivo antioxidant properties of bioactive compounds from green propolis obtained by ultrasound-assisted extraction. Food Chem X 4:100054. https://doi.org/10.1016/j.fochx.2019.100054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yong H, Liu J (2021) Active packaging films and edible coatings based on polyphenol-rich propolis extract: a review. Compr Rev Food Sci Food Saf 20:2106–2145. https://doi.org/10.1111/1541-4337.12697

    Article  CAS  PubMed  Google Scholar 

  25. Otoni CG, Avena-Bustillos RJ, Azeredo HMC et al (2017) Recent advances on edible films based on fruits and vegetables—a review. Compr Rev Food Sci Food Saf 16:1151–1169. https://doi.org/10.1111/1541-4337.12281

    Article  PubMed  Google Scholar 

  26. de Lima Silva ID, de Moraes LE, Caetano VF et al (2021) Development of antioxidant active PVA films with plant extract of Caesalpinia ferrea Martius. LWT 144:111215. https://doi.org/10.1016/j.lwt.2021.111215

    Article  CAS  Google Scholar 

  27. Chang-Bravo L, López-Córdoba A, Martino M (2014) Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. React Funct Polym 85:11–19. https://doi.org/10.1016/j.reactfunctpolym.2014.09.025

    Article  CAS  Google Scholar 

  28. Costa SS, Druzian JI, Machado BAS et al (2014) Bi-Functional biobased packing of the cassava starch, glycerol, Licuri Nanocellulose and red propolis. PLoS ONE 9:e112554

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Araújo GKP, de Souza SJ, da Silva MV et al (2015) Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int J Food Sci Technol 50:2080–2087. https://doi.org/10.1111/ijfs.12869

    Article  CAS  Google Scholar 

  30. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702. https://doi.org/10.1016/j.foodhyd.2016.06.001

    Article  CAS  Google Scholar 

  31. Júnior LM, de Ávila Gonçalves S, da Silva RG et al (2022) Effect of green propolis extract on functional properties of active pectin-based films. Food Hydrocoll 131:107746. https://doi.org/10.1016/j.foodhyd.2022.107746

    Article  CAS  Google Scholar 

  32. Suriyatem R, Auras RA, Rachtanapun C, Rachtanapun P (2018) Biodegradable rice starch/carboxymethyl chitosan films with added propolis extract for potential use as active food packaging. Polym 10:954

    Article  Google Scholar 

  33. Ulloa PA, Vidal J, Lopéz de Dicastillo C et al (2019) Development of poly(lactic acid) films with propolis as a source of active compounds: biodegradability, physical, and functional properties. J Appl Polym Sci 136:47090. https://doi.org/10.1002/app.47090

    Article  CAS  Google Scholar 

  34. Marangoni Júnior L, Rodrigues PR, da Silva RG et al (2021) Sustainable packaging films composed of sodium alginate and hydrolyzed collagen: preparation and characterization. Food Bioprocess Technol 14:2336–2346. https://doi.org/10.1007/s11947-021-02727-7

    Article  CAS  Google Scholar 

  35. ISO-4593 (1993) Plastics: film and sheeting determination of thickness by mechanical scanning. Switzerland. 2

  36. ASTM-D882 (2018) Standard Test Method for Tensile Properties of Thin Plastic Sheeting. West Conshohocken. 12

  37. ASTM-E96/E96M (2016) Standard Test Methods for Water Vapor Transmission of materials, West Conshohocken. 14

  38. ASTM-E-1348 (2015) Standard test method for transmittance and color by spectrophotometry using hemispherical geometry. West Conshohocken. 3

  39. Vargas-Torrico MF, von Borries-Medrano E, Aguilar-Méndez MA (2022) Development of gelatin/carboxymethylcellulose active films containing Hass avocado peel extract and their application as a packaging for the preservation of berries. Int J Biol Macromol 206:1012–1025. https://doi.org/10.1016/j.ijbiomac.2022.03.101

    Article  CAS  PubMed  Google Scholar 

  40. Sirisha Nallan Chakravartula S, Lourenço RV, Balestra F et al (2020) Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag Shelf Life 24:100498. https://doi.org/10.1016/j.fpsl.2020.100498

    Article  Google Scholar 

  41. Barud HDS, de Araújo Júnior AM, Saska S et al (2013) Antimicrobial brazilian propolis (epp-af) containing biocellulose membranes as promising biomaterial for skin wound healing. Evidence-Based Complement Altern Med 2013:703024. https://doi.org/10.1155/2013/703024

    Article  Google Scholar 

  42. Sharaf S, Higazy A, Hebeish A (2013) Propolis induced antibacterial activity and other technical properties of cotton textiles. Int J Biol Macromol 59:408–416. https://doi.org/10.1016/j.ijbiomac.2013.04.030

    Article  CAS  PubMed  Google Scholar 

  43. Silva AJ, Silva JR, de Souza NC, Souto PCS (2014) Membranes from latex with propolis for biomedical applications. Mater Lett 116:235–238. https://doi.org/10.1016/j.matlet.2013.11.045

    Article  CAS  Google Scholar 

  44. Oliveira RN, Moreira APD, da Thiré RM, SM, et al (2017) Absorbent polyvinyl alcohol–sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polym Eng Sci 57:1224–1233. https://doi.org/10.1002/pen.24500

    Article  CAS  Google Scholar 

  45. Voo W-P, Lee B-B, Idris A et al (2015) Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile. RSC Adv 5:36687–36695. https://doi.org/10.1039/C5RA03862F

    Article  CAS  Google Scholar 

  46. Pereira R, Tojeira A, Vaz DC et al (2011) Preparation and characterization of films based on alginate and aloe vera. Int J Polym Anal Charact 16:449–464. https://doi.org/10.1080/1023666X.2011.599923

    Article  CAS  Google Scholar 

  47. Fertah M, Belfkira A, Dahmanemontassir E et al (2017) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10:S3707–S3714. https://doi.org/10.1016/j.arabjc.2014.05.003

    Article  CAS  Google Scholar 

  48. Lawrie G, Keen I, Drew B et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8:2533–2541. https://doi.org/10.1021/bm070014y

    Article  CAS  Google Scholar 

  49. Costa MJ, Marques AM, Pastrana LM et al (2018) Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll 81:442–448. https://doi.org/10.1016/j.foodhyd.2018.03.014

    Article  CAS  Google Scholar 

  50. Liu S, Li Y, Li L (2017) Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydr Polym 160:62–70. https://doi.org/10.1016/j.carbpol.2016.12.048

    Article  CAS  PubMed  Google Scholar 

  51. Sadeghi M, Hosseinzadeh H (2013) Synthesis and properties of collagen-g-poly(sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Brazilian J Chem Eng 30:379–389. https://doi.org/10.1590/S0104-66322013000200015

    Article  Google Scholar 

  52. Marangoni Júnior L, Rodrigues PR, da Silva RG et al (2022) Improving the mechanical properties and thermal stability of sodium alginate/hydrolyzed collagen films through the incorporation of SiO2. Curr Res Food Sci 5:96–101. https://doi.org/10.1016/j.crfs.2021.12.012

    Article  CAS  PubMed  Google Scholar 

  53. Aloui H, Deshmukh AR, Khomlaem C, Kim BS (2021) Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocoll 113:106508. https://doi.org/10.1016/j.foodhyd.2020.106508

    Article  CAS  Google Scholar 

  54. Zhang R, Guo J, Liu Y et al (2018) Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers. Carbohydr Polym 189:72–78. https://doi.org/10.1016/j.carbpol.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  55. Helmiyati AM (2017) Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. IOP Conf Ser Mater Sci Eng 188:012019. https://doi.org/10.1088/1757-899X/188/1/012019

    Article  Google Scholar 

  56. Pastor C, Sánchez-González L, Cháfer M et al (2010) Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydr Polym 82:1174–1183. https://doi.org/10.1016/j.carbpol.2010.06.051

    Article  CAS  Google Scholar 

  57. Xue F, Zhao M, Liu X et al (2021) Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. Futur Foods 3:100033. https://doi.org/10.1016/j.fufo.2021.100033

    Article  CAS  Google Scholar 

  58. Roy S, Kim HC, Kim JW et al (2020) Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Mater Today Commun 24:100984. https://doi.org/10.1016/j.mtcomm.2020.100984

    Article  CAS  Google Scholar 

  59. Roy S, Rhim J-W (2021) Preparation of gelatin/carrageenan-based color-indicator film integrated with Shikonin and Propolis for smart food packaging applications. ACS Appl Bio Mater 4:770–779. https://doi.org/10.1021/acsabm.0c01353

    Article  CAS  Google Scholar 

  60. Hajinezhad S, Razavizadeh BM, Niazmand R (2020) Study of antimicrobial and physicochemical properties of LDPE/propolis extruded films. Polym Bull 77:4335–4353. https://doi.org/10.1007/s00289-019-02965-y

    Article  CAS  Google Scholar 

  61. Khodayari M, Basti AA, Khanjari A et al (2019) Effect of poly(lactic acid) films incorporated with different concentrations of Tanacetum balsamita essential oil, propolis ethanolic extract and cellulose nanocrystals on shelf life extension of vacuum-packed cooked sausages. Food Packag Shelf Life 19:200–209. https://doi.org/10.1016/j.fpsl.2018.11.009

    Article  Google Scholar 

  62. Marangoni Júnior L, Jamróz E, de Gonçalves S, Á, et al (2022) Preparation and characterization of sodium alginate films with propolis extract and nano-SiO2. Food Hydrocoll Heal 2:100094. https://doi.org/10.1016/j.fhfh.2022.100094

    Article  CAS  Google Scholar 

  63. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der waals adsorption of gases. J Am Chem Soc 62:1723–1732. https://doi.org/10.1021/ja01864a025

    Article  CAS  Google Scholar 

  64. Smith SE (1947) The sorption of water vapor by high polymers. J Am Chem Soc 69:646–651. https://doi.org/10.1021/ja01195a053

    Article  CAS  Google Scholar 

  65. Nazreen AZ, Jai J, Abdulbari Ali S, Mohamed Manshor N (2020) Moisture adsorption isotherm model for edible food film packaging – a review. Sci Res J 17:221. https://doi.org/10.24191/srj.v17i2.10160

    Article  Google Scholar 

  66. Ahmad M, Nirmal NP, Danish M et al (2016) Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Adv 6:82191–82204. https://doi.org/10.1039/c6ra13043g

    Article  CAS  Google Scholar 

  67. Fakhreddin Hosseini S, Rezaei M, Zandi M, Ghavi FF (2013) Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem 136:1490–1495. https://doi.org/10.1016/j.foodchem.2012.09.081

    Article  CAS  PubMed  Google Scholar 

  68. Guerrero P, Nur Hanani ZA, Kerry JP, De La Caba K (2011) Characterization of soy protein-based films prepared with acids and oils by compression. J Food Eng 107:41–49. https://doi.org/10.1016/j.jfoodeng.2011.06.003

    Article  CAS  Google Scholar 

  69. Jridi M, Hajji S, Ben AH et al (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int J Biol Macromol 67:373–379. https://doi.org/10.1016/j.ijbiomac.2014.03.054

    Article  CAS  PubMed  Google Scholar 

  70. Kowalonek J, Kaczmarek H (2010) Studies of pectin/polyvinylpyrrolidone blends exposed to ultraviolet radiation. Eur Polym J 46:345–353. https://doi.org/10.1016/j.eurpolymj.2009.09.015

    Article  CAS  Google Scholar 

  71. Gomaa M, Hifney AF, Fawzy MA, Abdel-Gawad KM (2018) Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocoll 82:239–247. https://doi.org/10.1016/j.foodhyd.2018.03.056

    Article  CAS  Google Scholar 

  72. Borges JG, Silva AG, Cervi-Bitencourt CM et al (2016) Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: Functional properties. Int J Biol Macromol 86:907–916. https://doi.org/10.1016/j.ijbiomac.2016.01.089

    Article  CAS  PubMed  Google Scholar 

  73. Arruda C, Pena Ribeiro V, Oliveira Almeida M et al (2020) Effect of light, oxygen and temperature on the stability of artepillin C and p-coumaric acid from Brazilian green propolis. J Pharm Biomed Anal 178:112922. https://doi.org/10.1016/j.jpba.2019.112922

    Article  CAS  PubMed  Google Scholar 

  74. Andrade JKS, Denadai M, de Oliveira CS et al (2017) Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int 101:129–138. https://doi.org/10.1016/j.foodres.2017.08.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Council for Scientific and Technological Development (CNPq), Grant Number 403595/2021-5; and the São Paulo Research Foundation (FAPESP) for the post-doctoral fellowship of L. Marangoni Júnior (2021/04043-2). This study was partly financed by the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Financial Code 001.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, (Grant Number 2021/04043-2), Conselho Nacional de Desenvolvimento Científico e Tecnológico, (Grant Number 403595/2021-5).

Author information

Authors and Affiliations

Authors

Contributions

LMJ: Conceptualization, Data curation, Formal analysis, Investigation, Writing – original draft. PRR: Data curation, Formal analysis, Investigation, Writing – original draft.EJ: Data curation, Investigation, Writing – original draft. RGdaS: Formal analysis, Writing – review & editing. RMVA: Formal analysis, Writing – review & editing. RPV: Conceptualization, Data curation, Funding acquisition, Investigation, Writing – original draft, Writing – review & editing.

Corresponding authors

Correspondence to Luís Marangoni Júnior or Roniérik Pioli Vieira.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marangoni Júnior, L., Rodrigues, P.R., Jamróz, E. et al. Green Propolis Extract as an Antioxidant Additive for Active Films Based on Sodium Alginate and Hydrolyzed Collagen. J Polym Environ 31, 1853–1865 (2023). https://doi.org/10.1007/s10924-022-02722-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02722-9

Keywords

Navigation