Skip to main content
Log in

In Situ Compatibilization of Isotactic Polypropylene and High-Density Polyethylene by a Melt Cobranching Reaction

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Incompatible polypropylene (PP) and polyethylene (PE) are difficult to separate in mixed recycling streams such as waste plastic packaging, which makes polyolefin mixtures unsuitable for high-quality products. In this work, based on the free radical branching reaction, a co-branching reaction of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) blends was carried out in the presence of the peroxide, free radical regulator and multifunctional acrylate monomer, and a star-like long-chain branching (LCB) copolymer was obtained. The effect of in situ compatibilization on the structures and mechanical properties of iPP/HDPE was investigated, and the compatibilization mechanism was discussed. Results showed that the mechanical properties of the modified blends were largely improved, and efficient in-situ compatibilization of iPP and HDPE could be taken place in a wide process window. Moreover, the sizes of the dispersed phase in the modified blends were clearly decreased, and the interfacial thickness increased. Compared with the pure iPP/HDPE blend, the initial crystallization temperature of iPP in the modified iPP/HDPE blend was increased, and long branched chains of the LCB copolymers were physically entangled with the chemical identical homopolymers or even participated in the crystallization of iPP and HDPE. Thanks to the in situ compatibilization strategy, the compatibility of iPP/HDPE was significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Eagan JM, Xu J, Girolam RD, Christopher MT, Christopher WM, Anne ML, Frank SB, Geoffrey WC (2017) Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock. Science 355:814–816

    Article  CAS  Google Scholar 

  2. Jordan AM, Kim K, Soetrisno D, Hannah J, Bates FS, Jaffer SA, Lhost O, Macosko CW (2018) Role of crystallization on polyolefin interfaces: an improved outlook for polyolefin blends. Macromolecules 51:2506–2516

    Article  CAS  Google Scholar 

  3. Herbort AF et al (2018) Alkoxy-silyl induced agglomeration: a new approach for the sustainable removal of microplastic from aquatic systems. J Polym Environ 26:4258–4270

    Article  CAS  Google Scholar 

  4. Rochman CM (2018) Microplastics research-from sink to source. Science 360:28–29

    Article  CAS  Google Scholar 

  5. Chaffin KA, Knutsen JS, Brant P, Bates FS (2000) Highstrength welds in metallocene polypropylene/polyethylene laminates. Science 288:2187–2190

    Article  CAS  Google Scholar 

  6. Yasamin K, Ramezani KA, Denis R (2015) Compatibilization efficiency in post-consumer recycled polyethylene/polypropylene blends: Effect of contamination. Polym Eng Sci 55:2368–2376

    Article  Google Scholar 

  7. Creton C (2017) Molecular stitches for enhanced recycling of packaging. Science 355:797–798

    Article  CAS  Google Scholar 

  8. Camargo RD, Saron C (2020) Mechanical-Chemical Recycling of Low-Density Polyethylene Waste with Polypropylene. J Polym Environ 28(3):794–802

    Article  Google Scholar 

  9. Carvalho VL, Safieddine C, Demarquette NR, Pinheiro LA (2019) In situ compatibilization of a polyethylene, polypropylene, and polystyrene ternary blend through Friedel-Crafts alkylation. J Appl Polym Sci 137:48295

    Article  Google Scholar 

  10. Wang WZ, Zhang XC, Maoc ZY, Zhao WQ (2019) Effects of gamma radiation on the impact strength of polypropylene (PP)/high density polyethylene (HDPE) blends. Results Phys 12:2169–2174

    Article  Google Scholar 

  11. Gu JQ, Xu HY, Wu CF (2013) The Effect of PP and Peroxide on the Properties and Morphology of HDPE and HDPE/PP Blends. Adv Polym Tech 32:72–72

    Article  Google Scholar 

  12. Klimovica K, Pan SS, Lin TW, Peng XY, Ellison J (2020) Compatibilization of iPP/HDPE Blends with PE-g-iPP Graft Copolymers. Acs Macro Lett 9:1161–1166

    Article  CAS  Google Scholar 

  13. Mohan TP, Kanny K (2013) Melt blend studies of nanoclay-filled polypropylene (PP)–high-density polyethylene (HDPE) composites. J Mater Sci 48(23):8292–8301

    Article  CAS  Google Scholar 

  14. Jeannette MG, Megan LR (2017) The future of plastics recycling. Science 358:870–872

    Article  Google Scholar 

  15. Xu J, Eagan JM, Kim SS, Pan SS, Lee BJ, Klimovica K, Jin KL, Lin TW, Micah JH, Ellison CJ, LaPointe AM, Coates GW, Bates FS (2018) Compatibilization of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) with iPP−PE multiblock copolymers. Macromolecules 51:8585–8596

    Article  CAS  Google Scholar 

  16. López-Barrón CR, Tsou AH (2017) Strain hardening of polyethylene /polypropylene blends via interfacial reinforcement with poly(ethylene-cb-propylene) comb block copolymers. Macromolecules 50:2986–2995

    Article  Google Scholar 

  17. Chaffin KA, Bates FS, Brant P, Brown GM (2000) Semicrystalline blends of polyethylene and isotactic polypropylene: improving mechanical performance by enhancing the interfacial structure. J Polym Sci Pol Phys 38:108–121

    Article  CAS  Google Scholar 

  18. Li YC, Jia S, Dua SL, Wang YF, Lu LD, Zhang JB (2018) Improved properties of recycled polypropylene by introducing the long chain branched structure through reactive extrusion. Waste Manage 76:172–179

    Article  CAS  Google Scholar 

  19. Yao Z, Lu ZQ, Zhao X, Qu BW, Shen ZC, Cao K (2009) Synthesis and characterization of High-Density Polypropylene-grafted polyethylene via a macromolecular reaction and its rheological behavior. J Appl Polym Sci 111:2553–2561

    Article  CAS  Google Scholar 

  20. Li Y, Yao Z, Chen ZH, Qiu SL, Zeng CC, Cao K (2015) High melt strength polypropylene by ionic modification: Preparation, rheological properties and foaming behaviors. Polymer 70:207–214

    Article  CAS  Google Scholar 

  21. Liu JY, Yu W, Zhou CX (2011) Polymer chain topological map as determined by linear viscoelasticity. J Rheol 55:545–570

    Article  CAS  Google Scholar 

  22. Zhang ZJ, Xing HP, Qiu J, Jiang ZW, Yu HO, Du XH, Wang YH, Ma L, Tang T (2010) Controlling melt reactions during preparing long chain branched polypropylene using copper N, N-dimethyldithiocarbamate. Polymer 51:1593–1598

    Article  CAS  Google Scholar 

  23. Li SZ, Xiao MM, Guan Y, Wei DF, Xiao HN, Zheng NN (2012) A novel strategy for the preparation of long chain branching polypropylene and the investigation on foamability and rheology. Eur Polym J 48:362–371

    Article  CAS  Google Scholar 

  24. Münstedt H, Schwarzl FR (2011) Rheological properties and molecular structure of polymer melts. Soft Matter 7:2273–2283

    Article  Google Scholar 

  25. Blom HP, Teh JW, Rudin A (1996) iPP/HDPE blends II Modification with EPDM and EVA. J Appl Polym Sci 60:1405–1417

    Article  CAS  Google Scholar 

  26. Ha MH, Kim BK, Kim EY (2004) Effects of Dispersed Phase Composition on Thermoplastic Polyolefins. J Appl Polym Sci 93:179–188

    Article  CAS  Google Scholar 

  27. Zhang C, Yi XS, Asai S, Sumita M (2000) Morphology, crystallization and melting behaviors of isotactic polypropylene/high density polyethylene blend: effect of the addition of short carbon fiber. J Mater Sci 35:673–683

    Article  CAS  Google Scholar 

  28. Prokhorov KA, Nikolaeva GY, Sagitova EA, Pashinin PP, Guseva MA, Shklyaruk BF, Gerasin VA (2018) Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities. Laser Phys 28:045702

    Article  Google Scholar 

  29. Samuel AZ (2020) Direct estimation of polymer crystallinity with Raman spectroscopy using ratio of scattering cross-sections estimated from variable temperature measurements. Spectrochim Acta A 224:117431

    Article  CAS  Google Scholar 

  30. López-Barrón CR, Macosko CW (2014) Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening. J Rheol 58:1935–1953

    Article  Google Scholar 

  31. Martin JD, Velankar SS (2007) Effects of compatibilizer on immiscible polymer blends near phase inversion. J Rheol 51:669–692

    Article  CAS  Google Scholar 

  32. Wu DF, Zhang YS, Zhang M, Wu LF (2007) Morphology, nonisothermal crystallization behavior, and kinetics of poly(phenylene sulfide)/polycarbonate blend. J Appl Polym Sci 105:739–748

    Article  CAS  Google Scholar 

  33. Kempf M, Ahirwal D, Cziep M, Wilhelm M (2013) Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching. Macromolecules 46:4978–4994

    Article  CAS  Google Scholar 

  34. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson R (2002) A Well-defined, model long chain branched polyethylene 2 Melt rheological behavior. Macromolecules 35:3066–3075

    Article  CAS  Google Scholar 

  35. Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328

    Article  CAS  Google Scholar 

  36. Kanso MA, Giacomin AJ (2020) Van Gurp-Palmen relations for long-chain branching from general rigid bead-rod theory. Phys Fluids 32:033101

    Article  CAS  Google Scholar 

  37. Stadler FJ, Chun YS, Han JH, Lee E, Park SH, Yang CB, Choi C (2016) Deriving comprehensive structural information on long-chain branched polyethylenes from analysis of thermos-rheological complexity. Polymer 104:179–192

    Article  CAS  Google Scholar 

  38. López-Barrón C, Patrick B, Maksim S, Lu JM, Kang SH, Throckmorton J, Trent M, Truyen P, Rebecca C (2018) Long-chain hyperbranched comb block copolymers: synthesis, microstructure, rheology, and thermal behavior. Macromolecules 51:5720–5731

    Article  Google Scholar 

  39. Tsou AH, López-Barrón CR, Jiang P, Crowther DJ, Zeng Y (2016) Bimodal poly(ethylene-cb-propylene) comb block copolymers from serial reactors: synthesis and applications as processability additives and blend compatibilizers. Polymer 104:72–82

    Article  CAS  Google Scholar 

  40. Tian Z, Chen KR, Liu BP, Luo N, Du WL, Qian F (2015) Short-chain branching distribution oriented model development for Borstar bimodal polyethylene process and its correlation with product performance of slow crack growth. Chem Eng Sci 130:41–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key R & D Plan of China (2019YFC1908200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Luo or Jianjun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, L., Li, X. et al. In Situ Compatibilization of Isotactic Polypropylene and High-Density Polyethylene by a Melt Cobranching Reaction. J Polym Environ 30, 1127–1140 (2022). https://doi.org/10.1007/s10924-021-02263-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02263-7

Keywords

Navigation