Skip to main content
Log in

A Cross-linked Polyethylene with Recyclability and Mechanical Robustness Enabled by Establishment of Multiple Hydrogen Bonds Network via Reactive Melt Blending

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Physical cross-linking by hydrogen-bonds (H-bonds), providing a good combination of application properties of thermosets and processability of thermoplastics, is a potential strategy to resolve the recycling problem of traditional chemically cross-linked polyethylene. However, ureidopyrimidone (UPy), the most widely used H-bonding motif, is unfavorable for large-scale industrial application due to its poor thermal stability. In this work, H-bonds cross-linked polyethylene was successfully prepared by reactive melt blending maleic anhydride grafted polyethylene (PE-g-MAH) with 3-amino-1,2,4-triazole (ATA) to form amide triazole ring-carboxylic acid units. Triazole ring can easily generate multiple H-bonds with carboxylic acid and amide. More importantly, these units are more thermal stable than UPy due to the absence of unstable urea group of UPy. The introduction of H-bonds cross-linking leads to an obvious improvement in mechanical properties and creep resistance and a good maintain in thermal properties and recyclability. Furthermore, the reinforcement effect monotonically improves with increasing the density of H-bonds. The obtained good properties are mainly attributed to largely enhanced interchain interactions induced by H-bonds cross-linking and intrinsic reversibility of H-bonds. This work develops a novel way for the simple fabrication of H-bonds cross-linked PE with high performance through reactive melt blending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stuerzel, M.; Mihan, S.; Muelhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016, 116, 1398–1433.

    CAS  Google Scholar 

  2. Wang, Z. B.; Mao, Y. M.; Li, X. K.; Li Y. K.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao B. S. The influence of ethyl branch on formation of shish-kebab crystals in bimodal polyethylene under shear at low temperature. Chinese J. Polym. Sci. 2021, 39, 1050–1058.

    CAS  Google Scholar 

  3. An, M. F.; Lv, Y.; Xu, H. J.; Wang, B. J.; Wang, Y. X.; Gu, Q.; Wang, Z. B. Effect of gel solution concentration on the structure and properties of gel-spun ultrahigh molecular weight polyethylene fibers. Ind. Eng. Chem. Res. 2016, 55, 8357–8363.

    CAS  Google Scholar 

  4. Gomez-Estaca, J.; Lopez-de-Dicastillo, C.; Hernandez-Munoz, P.; Catala, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51.

    CAS  Google Scholar 

  5. Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066–3070.

    CAS  PubMed  Google Scholar 

  6. Hubert, L.; David, L.; Seguela, R.; Vigier, G.; Degoulet, C.; Germain, Y. Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. I. Microstructure and crystallisation kinetics. Polymer 2001, 42, 8425–8434.

    CAS  Google Scholar 

  7. Chen, L.; Hou, J. R.; Chen, Y. W.; Wang, H. J.; Duan, Y. X.; Zhang, J. M. Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites. Compos. Part B 2019, 178, 8.

    Google Scholar 

  8. Gibb, B. C. Plastics are forever. Nat. Chem. 2019, 11, 394–395.

    CAS  PubMed  Google Scholar 

  9. Du, Z. C.; Yang, H.; Luo, X. H.; Xie, Z. X.; Fu, Q.; Gao, X. Q. The role of mold temperature on morphology and mechanical properties of pe pipe produced by rotational shear. Chinese J. Polym. Sci. 2020, 38, 653–664.

    CAS  Google Scholar 

  10. Cao, W.; Wang, K.; Zhang, Q.; Du, R. N.; Fu, Q. The hierarchy structure and orientation of high density polyethylene obtained via dynamic packing injection molding. Polymer 2006, 47, 6857–6867.

    CAS  Google Scholar 

  11. Thomas, J.; Joseph, B.; Jose, J. P.; Maria, H. J.; Main, P.; Rahman, A. A.; Francis, B.; Ahmad, Z.; Thomas, S. Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind. Eng. Chem. Res. 2019, 58, 20863–20879.

    CAS  Google Scholar 

  12. Khonakdar, H. A.; Morshedian, J.; Wagenknecht, U.; Jafari, S. H. An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer 2003, 44, 4301–4309.

    CAS  Google Scholar 

  13. Chen, Z.; Leatherman, M. D.; Daugulis, O.; Brookhart, M. Nickel-catalyzed copolymerization of ethylene and vinyltrialkoxysilanes: catalytic production of cross-linkable polyethylene and elucidation of the chain-growth mechanism. J. Am. Chem. Soc. 2017, 139, 16013–16022.

    CAS  PubMed  Google Scholar 

  14. Wang, B.; Wang, M.; Xing, Z.; Zeng, H.; Wu, G. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach. J. Appl. Polym. Sci. 2013, 127, 912–918.

    CAS  Google Scholar 

  15. Lehn, J. M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 1999, 5, 2455–2463.

    CAS  Google Scholar 

  16. Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–54.

    CAS  PubMed  Google Scholar 

  17. Hu, Z.; Li, Y.; Xu, X.; Yuan, W.; Yang, L.; Shao, Q.; Guo, Z.; Ding, T.; Huang, Y. Efficient intrinsic self-healing epoxy acrylate formed from host-guest chemistry. Polymer 2019, 164, 79–85.

    CAS  Google Scholar 

  18. Xia, S.; Song, S.; Gao, G. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 2018, 354, 817–824.

    CAS  Google Scholar 

  19. Wei, H.; Tong, L.; Yu, S.; Zhang, J.; Dong, Y.; Li, X.; Ding, Y. Non-covalently crosslinked anion exchange membranes: effect of urea hydrogen-bonding group position. Polymer 2019, 179, 121654.

    CAS  Google Scholar 

  20. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10, 14–27.

    CAS  PubMed  Google Scholar 

  21. Feng, P.; Wang, W.; Hou, J.; Wang, K.; Cheng, S.; Jiang, K. A 3D coral-like structured NaVPO4F/C constructed by a novel synthesis route as high-performance cathode material for sodium-ion battery. Chem. Eng. J. 2018, 353, 25–33.

    CAS  Google Scholar 

  22. Dong, H.; Xin, Z.; Lu, X.; Lv, Y. Effect of N-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines. Polymer 2011, 52, 1092–1101.

    CAS  Google Scholar 

  23. Grande, A. M.; Bijleveld, J. C.; Garcia, S. J.; van der Zwaag, S. A combined fracture mechanical-rheological study to separate the contributions of hydrogen bonds and disulphide linkages to the healing of poly(urea-urethane) networks. Polymer 2016, 96, 26–34.

    CAS  Google Scholar 

  24. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604.

    CAS  PubMed  Google Scholar 

  25. Lin, Y. L.; Li, G. J. An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels. J. Mater. Chem. B 2014, 2, 6878–6885.

    CAS  PubMed  Google Scholar 

  26. Houston, K. R.; Jackson, A. M. S.; Yost, R. W.; Carman, H. S.; Ashby, V. S. Supramolecular engineering polyesters: endgroup functionalization of glycol modified PET with ureidopyrimidinone. Polym. Chem. 2016, 7, 6744–6751.

    CAS  Google Scholar 

  27. Hympanova, L.; Mori daCunha, M. G. M. C.; Rynkevic, R.; Wachf, R. A.; Olejnik, A. K.; Dankers, P. Y. W.; Arts, B.; Mes, T.; Bosman, A. W.; Albersen, M.; Deprest, J. Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. J. Mech. Behav. Biomed. Mater. 2018, 88, 431–441.

    CAS  PubMed  Google Scholar 

  28. Zhang, J. P.; Zhang, F. S. Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis. Chem. Eng. J. 2018, 331, 169–176.

    CAS  Google Scholar 

  29. Zych, A.; Verdelli, A.; Soliman, M.; Pinalli, R.; Vachon, J.; Dalcanale, E. Physically cross-linked polyethylene via reactive extrusion. Polym. Chem. 2019, 10, 1741–1750.

    CAS  Google Scholar 

  30. Tellers, J.; Canossa, S.; Pinalli, R.; Soliman, M.; Vachon, J.; Dalcanale, E. Dynamic cross-linking of polyethylene via sextuple hydrogen bonding array. Macromolecules 2018, 51, 7680–7691.

    CAS  Google Scholar 

  31. van Beek, D. J. M.; Spiering, A. J. H.; Peters, G. W. M.; te Nijenhuis, K.; Sijbesma, R. P. Unidirectional dimerization and stacking of ureidopyrimidinone end groups in polycaprolactone supramolecular polymers. Macromolecules 2007, 40, 8464–8475.

    CAS  Google Scholar 

  32. Wang, P.; Cai, Z. S. Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism. Polym. Degrad. Stabil. 2017, 137, 138–150.

    CAS  Google Scholar 

  33. Cai, J. X.; Xie, C. P.; Xiong, J.; Zhang, J. Y.; Yin, P.; Pang, S. P. High performance and heat-resistant pyrazole-1,2,4-triazole energetic materials: tuning the thermal stability by asymmetric framework and azo-bistriazole bridge. Chem. Eng. J. 2022, 433, 134480.

    CAS  Google Scholar 

  34. Chino, K.; Ashiura, M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 2001, 34, 9201–9204.

    CAS  Google Scholar 

  35. Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J. Mater. Chem. A 2017, 5, 25660–25671.

    CAS  Google Scholar 

  36. Xiong, C.; Li, X.; He, H.; Xue, B.; Wang, Y.; Li, J.; Zhu, Z. A thermally reversible healing EPDM based elastomer with higher tensile properties and damping properties. J. Appl. Polym. Sci. 2021, 138, e49767.

    Google Scholar 

  37. Wang, S. S.; Zhao, Z. Q.; Wang, N.; Zhao, J. R.; Feng, Y. Structure and mechanism of functional isotactic polypropylene via in situ chlorination graft copolymerization. Polym. Int. 2011, 60, 1068–1077.

    CAS  Google Scholar 

  38. Barra, G. M.; Crespo, J. S.; Bertolino, J. R.; Soldi, V.; Pires, A. T. N. Maleic anhydride grafting on EPDM: qualitative and quantitative determination. J. Braz. Chem. Soc. 1999, 10, 31–34.

    CAS  Google Scholar 

  39. Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 2016, 49, 8593–8604.

    CAS  Google Scholar 

  40. Song, Y.; Liu, C. Waste-reducing preparation of PE-g-MAH and PE-g-DBM via solid phase grafting reaction and their application as compatibilizers. J. Appl. Polym. Sci. 2006, 101, 3781–3790.

    CAS  Google Scholar 

  41. Nojiri, S.; Yamada, H.; Kimata, S.; Ikeda, K.; Senda, T.; Bosman, A. W. Supramolecular polypropylene with self-complementary hydrogen bonding system. Polymer 2016, 87, 308–315.

    CAS  Google Scholar 

  42. Martin, S.; Vega, J. F.; Exposito, M. T.; Flores, A.; Martinez-Salazar, J. A three-phase microstructural model to explain the mechanical relaxations of branched polyethylene: a DSC, WAXD and DMTA combined study. Colloid. Polym. Sci. 2011, 289, 257–268.

    CAS  Google Scholar 

  43. Stehling, F. C.; Mandelkern, L. The glass temperature of linear polyethylene. Macromolecules 1970, 3, 242–252.

    CAS  Google Scholar 

  44. Armstrong, G.; Buggy, M. Thermal stability of some self-assembling hydrogen-bonded polymers and related model complexes. Polym. Int. 2002, 51, 1219–1224.

    CAS  Google Scholar 

  45. Pietrasanta; Robin, J.; Torres, N.; Boutevin, B. Mechanical performance improvement of low-density polyethylene blends. Mech. Time-Depend. Mater. 1998, 2, 85–95.

    CAS  Google Scholar 

  46. Jose, J. P.; Thomas, S. Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties. Phys. Chem. Chem. Phys. 2014, 16, 14730–14740.

    CAS  PubMed  Google Scholar 

  47. Liu, S. Q.; Gong, W. G.; Zheng, B. C. The effect of peroxide cross-linking on the properties of low-density polyethylene. J. Macromol. Sci. Part B-Phys. 2014, 53, 67–77.

    Google Scholar 

  48. Wang, W.; Zhang, Y.; Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25.

    Google Scholar 

  49. Zhang, Q.; Cai, H.; Ren, X.; Kong, L.; Liu, J.; Jiang, X. The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites. Polymers 2017, 9, 628.

    PubMed  PubMed Central  Google Scholar 

  50. Xia, H.; Song, M.; Zhang, Z.; Richardson, M. Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites. J. Appl. Polym. Sci. 2007, 103, 2992–3002.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51803130) and Fundamental Research Funds for Central Universities and Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology (No. KFJJ2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, HD., Zhang, TT., Guo, ZY. et al. A Cross-linked Polyethylene with Recyclability and Mechanical Robustness Enabled by Establishment of Multiple Hydrogen Bonds Network via Reactive Melt Blending. Chin J Polym Sci 41, 1104–1114 (2023). https://doi.org/10.1007/s10118-023-2907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2907-5

Keywords

Navigation