Skip to main content
Log in

Novel Polyethyleneimine/κ-Carrageenan Composite from Facile One-Step Fabrication for the Removal of Copper Ion from Aqueous Solution

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, a novel PEI/CG composite was fabricated via a facile one-step strategy at ambient conditions using biodegradable and highly absorbent κ-carrageenan (CG) as a matrix, polyethyleneimine (PEI) as a functional component and poly(ethylene glycol) diglycidyl ether (PGDE) for cross-linking PEI/CG. Systematic investigations were carried out to determine the optimal PEI/CG mass ratio, PGDE/PEI mass ratio and the total concentration of CG and PEI in CG/PEI/PGDE/5 wt% NaOH solution. Batch adsorption experiments have been achieved to investigate the effects of different parameters including solution pH, adsorbent dose, initial Cu2+ concentration, solution temperature and contact time on the adsorption performance of the composite towards Cu2+. Interestingly, the PEI/CG composite showed efficient Cu2+ adsorption performance. Furthermore, adsorption kinetics, thermodynamics and isotherms have also been investigated to reveal Cu2+ adsorption behavior and mechanism by the composite during the Cu2+ adsorption process. In addition, the PEI/CG composite after Cu2+ adsorption was also investigated with FT-IR and EDS technique to estimate adsorbed Cu2+ onto the composite. This work opened up new horizons for the fabrication of novel PEI composite with practical application using a facile one-step fabrication strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun X, Chen JH, Su ZB, Huang YH, Dong XF (2016) Highly effective removal of Cu(II) by a novel 3-aminopropyltriethoxysilane functionalized polyethyleneimine/sodium alginate porous membrane adsorbent. Chem Eng J 290:1–11. https://doi.org/10.1016/j.cej.2015.12.106

    Article  CAS  Google Scholar 

  2. Vafakhah S, Bahrololoom ME, Bazarganlari R, Saeedikhani M (2014) Removal of copper ions from electroplating effluent solutions with native corn cob and corn stalk and chemically modified corn stalk. J Environ Chem Eng 2:356–361. https://doi.org/10.1016/j.jece.2014.01.005

    Article  CAS  Google Scholar 

  3. Awual MR, Rahman IMM, Yaita T, Khaleque MA, Ferdows M (2014) pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem Eng J 236:100–109. https://doi.org/10.1016/j.cej.2013.09.083

    Article  CAS  Google Scholar 

  4. Godiya CB, Liang M, Sayed SM, Li DW, Lu XL (2019) Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J Environ Manag 232:829–841. https://doi.org/10.1016/j.jenvman.2018.11.131

    Article  CAS  Google Scholar 

  5. Du Z, Zheng T, Wang P, Hao L, Wang Y (2016) Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour Technol 201:41–49. https://doi.org/10.1016/j.biortech.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  6. Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38. https://doi.org/10.1016/j.jhazmat.2018.09.076

    Article  CAS  PubMed  Google Scholar 

  7. Li GC, Liu B, Bai LM, Shi Z, Tang XB, Wang J, Liang H, Zhang YT, Bruggen BV (2020) Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation. Sep Purif Technol 238:116412. https://doi.org/10.1016/j.seppur.2019.116412

    Article  CAS  Google Scholar 

  8. Lejarazu-Larrañaga A, Zhao Y, Molina S, García-Calvo E, Bruggen BV (2019) Alternating current enhanced deposition of a monovalent selective coating for anion exchange membranes with antifouling properties. Sep Purif Technol 229:115807. https://doi.org/10.1016/j.seppur.2019.115807

    Article  CAS  Google Scholar 

  9. Liu KY, Huang ZY, Dai JL, Jiang YT, Yang GF, Liu YF, Lin CX, Lv YC, Liu MH (2020) Fabrication of amino-modified electrospun nanofibrous cellulose membrane and adsorption for typical organoarsenic contaminants: behavior and mechanism. Chem Eng J 382:122775. https://doi.org/10.1016/j.cej.2019.122775

    Article  CAS  Google Scholar 

  10. Cui Y, Ge Q, Liu XY, Chung TS (2014) Novel forward osmosis process to effectively remove heavy metal ions. J Membr Sci 467:188–194. https://doi.org/10.1016/j.memsci.2014.05.034

    Article  CAS  Google Scholar 

  11. Petrinic I, Korenak J, Povodnik D, Hélix-Nielsen C (2015) A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. J Clean Prod 101:292–300. https://doi.org/10.1016/j.jclepro.2015.04.022

    Article  CAS  Google Scholar 

  12. Bhatluri KK, Manna MS, Ghoshal AK, Saha P (2015) Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: conversion to solid waste by precipitation. J Hazard Mater 299:504–512. https://doi.org/10.1016/j.jhazmat.2015.07.030

    Article  CAS  PubMed  Google Scholar 

  13. Esalah JO, Weber ME, Vera JH (2000) Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can J Chem Eng 78:948–954. https://doi.org/10.1002/cjce.5450780512

    Article  CAS  Google Scholar 

  14. Arar Ö, Yüksel Ü, Kabay N, Yüksel M (2014) Various applications of electrodeionization (EDI) method for water treatment—a short review. Desalination 342:16–22. https://doi.org/10.1016/j.desal.2014.01.028

    Article  CAS  Google Scholar 

  15. Tran ATK, Mondal P, Lin J, Meesschaert B, Pinoy L, Bruggen BV (2015) Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor. J Membr Sci 473:118–127. https://doi.org/10.1016/j.memsci.2014.09.006

    Article  CAS  Google Scholar 

  16. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  17. Toakeno N (2005) Atlas of Ph-pH diagrams, intercomparison of thermodynamic databases. Geological Survey of Japan open File Report No. 419. National Institute of Advanced Science and Technology, Research Center for Deep Geological Environments

  18. Ghiasi S, Behboudi A, Mohammadi T, Ulbricht M (2020) High-performance positively charged hollow fiber nanofiltration membranes fabricated via green approach towards polyethyleneimine layer assembly. Sep Purif Technol 251:117313. https://doi.org/10.1016/j.seppur.2020.117313

    Article  CAS  Google Scholar 

  19. Godiya CB, Cheng X, Deng GZ, Li DW, Lu XL (2019) Silk fibroin/polyethyleneimine functional hydrogel for metal ion adsorption and upcycling utilization. J Environ Chem Eng 7:102806. https://doi.org/10.1016/j.jece.2018.11.050

    Article  CAS  Google Scholar 

  20. Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US (2012) Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev 41:4755–4767. https://doi.org/10.1039/C2CS35146C

    Article  PubMed  Google Scholar 

  21. Macías-García A, Corzo MG, Domínguez MA, Franco MA, Naharro JM (2017) Study of the adsorption and electroadsorption process of Cu(II) ions within thermally and chemically modified activated carbon. J Hazard Mater 328:46–55. https://doi.org/10.1016/j.jhazmat.2016.11.036

    Article  CAS  PubMed  Google Scholar 

  22. Neto AFDA, Vieira MGA, Silva MGCD (2014) Adsorption and desorption processes for copper removal from water using different eluents and calcined clay as adsorbent. J Water Process Eng 3:90–97. https://doi.org/10.1016/j.jwpe.2014.05.014

    Article  Google Scholar 

  23. Wu Q, Chen J, Clark M, Yu Y (2014) Adsorption of copper to different biogenic oyster shell structures. Appl Surf Sci 311:264–272. https://doi.org/10.1016/j.apsusc.2014.05.054

    Article  CAS  Google Scholar 

  24. Wang JJ, Ding L, Wei J, Liu F (2014) Adsorption of copper ions by ion-imprinted simultaneous interpenetrating network hydrogel: thermodynamics, morphology and mechanism. Appl Surf Sci 305:412–418. https://doi.org/10.1016/j.apsusc.2014.03.102

    Article  CAS  Google Scholar 

  25. Mercurio M, Mercurio V, Gennaro BD, Gennaro MD, Grifa C, Langella A, Morra V (2010) Natural zeolites and white wines from Campania region (Southern Italy): a new contribution for solving some oenological problems. Period Mineral 79:95–112. https://doi.org/10.2451/2010PM0005

    Article  Google Scholar 

  26. Wang M, Yang Q, Zhao XQ, Wang ZQ (2019) Highly efficient removal of copper ions from water by using a novel alginate–polyethyleneimine hybrid aerogel. Int J Biol Macromol 138:1079–1086. https://doi.org/10.1016/j.ijbiomac.2019.07.160

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Su DH, Yao JR, Huang YF, Shao ZZ, Chen X (2017) Soy protein-based polyethyleneimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. J Mater Chem A 5:4163–4171. https://doi.org/10.1039/C6TA10814H

    Article  CAS  Google Scholar 

  28. Huang ZJ, Huang ZY, Feng LJ, Luo XW, Wu PX, Cui LH, Mao XY (2018) Modified cellulose by polyethyleneimine and ethylenediamine with induced Cu(II) and Pb(II) adsorption potentialities. Carbohydr Polym 202:470–478. https://doi.org/10.1016/j.carbpol.2018.08.136

    Article  CAS  PubMed  Google Scholar 

  29. Jin XC, Xiang ZY, Liu QG, Chen Y, Lu FC (2017) Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresour Technol 244:844–849. https://doi.org/10.1016/j.biortech.2017.08.072

    Article  CAS  PubMed  Google Scholar 

  30. Kong ZL, Li XC, Tian JY, Yang JL, Sun SJ (2014) Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions. J Environ Manag 134:109–116. https://doi.org/10.1016/j.jenvman.2014.01.007

    Article  CAS  Google Scholar 

  31. Bandara PC, Nadres ET, Rodrigues DF (2019) Use of response surface methodology to develop and optimize the composition of a chitosan–polyethyleneimine–graphene oxide nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water. ACS Appl Mater Interfaces 11:17784–17795. https://doi.org/10.1021/acsami.9b03601

    Article  CAS  PubMed  Google Scholar 

  32. Krstić V, Uroševoć T, Pešovski B (2018) A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci 192:273–287. https://doi.org/10.1016/j.ces.2018.07.022

    Article  CAS  Google Scholar 

  33. Ueda K, Itoh M, Matsuzaki Y, Ochiai H, Imamura A (1998) Observation of the molecular weight change during the helix-coil transition of κ-carrageenan measured by the SEC-LALLS method. Macromolecules 31:675–680. https://doi.org/10.1021/ma970846w

    Article  CAS  Google Scholar 

  34. Liu S, Li L (2016) Recoverable and self-healing double network hydrogel based on κ-carrageenan. ACS Appl Mater Interfaces 8:29749–29758. https://doi.org/10.1021/acsami.6b11363

    Article  CAS  PubMed  Google Scholar 

  35. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

    Article  CAS  Google Scholar 

  36. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112. https://doi.org/10.1016/j.carbpol.2014.01.067

    Article  CAS  PubMed  Google Scholar 

  37. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R (2018) Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 198:385–400. https://doi.org/10.1016/j.carbpol.2018.06.086

    Article  CAS  PubMed  Google Scholar 

  38. Li LQ, Zhao JH, Sun YR, Yu F, Ma J (2019) Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chem Eng J 372:1091–1103. https://doi.org/10.1016/j.cej.2019.05.007

    Article  CAS  Google Scholar 

  39. Deng Y, Huang M, Sun D, Hou Y, Li YB, Dong TS, Wang XH, Zhang L, Yang WZ (2018) Dual physically cross-linked κ-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application. ACS Appl Mater Interfaces 10:37544–37554. https://doi.org/10.1021/acsami.8b15385

    Article  CAS  PubMed  Google Scholar 

  40. Liang XC, Wang XL, Xu Q, Lu Y, Zhang Y, Xia H, Lu A, Zhang LN (2018) Rubbery chitosan/carrageenan hydrogels constructed through an electroneutrality system and their potential application as cartilage scaffolds. Biomacromolecules 19:340–352. https://doi.org/10.1021/acs.biomac.7b01456

    Article  CAS  PubMed  Google Scholar 

  41. Nourmohammadi J, Roshanfar F, Farokhi M, Nazarpak MH (2017) Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C 76:951–958. https://doi.org/10.1016/j.msec.2017.03.166

    Article  CAS  Google Scholar 

  42. Varghese JS, Chellappan N, Fathima NN (2014) Gelatin-carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloid Surf B 113:346–351. https://doi.org/10.1016/j.colsurfb.2013.08.049

    Article  CAS  Google Scholar 

  43. Cosenza VA, Navarro DA, Fissore EN, Rojas AM, Stortz CA (2014) Chemical and rheological characterization of the carrageenans from Hypnea musciformis (Wulfen) Lamoroux. Carbohydr Polym 102:780–789. https://doi.org/10.1016/j.carbpol.2013.10.090

    Article  CAS  PubMed  Google Scholar 

  44. Duman O, Özcan C, Polat TG, Tunç S (2019) Carbon nanotube-based magnetic and non-magnetic adsorbents for the high efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT–Fe3O4 and OMWCNT–κ-carrageenan–Fe3O4 nanocomposites. Environ Pollut 244:723–732. https://doi.org/10.1016/j.envpol.2018.10.071

    Article  CAS  PubMed  Google Scholar 

  45. Duman O, Tunç S, Polat TG, Bozoglan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube–κ-carrageenan–Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr Polym 147:79–88. https://doi.org/10.1016/j.carbpol.2016.03.099

    Article  CAS  PubMed  Google Scholar 

  46. Duman O, Tunç S, Bozoglan BK, Polat TG (2016) Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube–κ-carrageenan–Fe3O4 nanocomposite. J Alloy Compd 687:370–383. https://doi.org/10.1016/j.jallcom.2016.06.160

    Article  CAS  Google Scholar 

  47. Polat TG, Duman O, Tunç S (2020) Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels. Colloids Surf A 602:124987. https://doi.org/10.1016/j.colsurfa.2020.124987

    Article  CAS  Google Scholar 

  48. Duman O, Polat TG, Diker CÖ, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int J Biol Macromol 160:823–835. https://doi.org/10.1016/j.ijbiomac.2020.05.191

    Article  CAS  PubMed  Google Scholar 

  49. Liang XC, Duan JJ, Xu Q, Wei XQ, Lu A, Zhang LN (2017) Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chem Eng J 317:766–776. https://doi.org/10.1016/j.cej.2017.02.089

    Article  CAS  Google Scholar 

  50. Kulal P, Badalamoole V (2020) Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int J Biol Macromol 165:542–553. https://doi.org/10.1016/j.ijbiomac.2020.09.202

    Article  CAS  PubMed  Google Scholar 

  51. Qi YW, Zhu LF, Shen X, Sotto A, Gao CJ, Shen JN (2019) Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes. Sep Purif Technol 222:117–124. https://doi.org/10.1016/j.seppur.2019.03.083

    Article  CAS  Google Scholar 

  52. Arshad F, Selvaraj M, Zain J, Banat F, Haija MA (2019) Polyethyleneimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep Purif Technol 209:870–880. https://doi.org/10.1016/j.seppur.2018.06.035

    Article  CAS  Google Scholar 

  53. Zhu F, Zheng YM, Zhang BG, Dai YR (2021) A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J Hazard Mater 401:123608. https://doi.org/10.1016/j.jhazmat.2020.123608

    Article  CAS  PubMed  Google Scholar 

  54. Chen YL, Pan BC, Li HY, Zhang WM, Lv L, Wu J (2010) Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environ Sci Technol 44:3508–3513. https://doi.org/10.1021/es100341x

    Article  CAS  PubMed  Google Scholar 

  55. Xu AR, Chen L, Guo X, Xiao ZH, Liu RK (2018) Biodegradable lignocellulosic porous materials: fabrication, characterization and its application in water processing. Int J Biol Macromol 115:846–852. https://doi.org/10.1016/j.ijbiomac.2018.04.133

    Article  CAS  PubMed  Google Scholar 

  56. Wang TT (2018) Polyethyleneimine-modified hybrid silica sorbent for hydrophilic solid-phase extraction of thyreostats in animal tissues. J Chromatogr A 1581–1582:16–24. https://doi.org/10.1016/j.chroma.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  57. Fang X, Ma H, Xiao SL, Shen MW, Guo R, Cao XY, Shi XY (2011) Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J Mater Chem 21:4493–4501. https://doi.org/10.1039/C0JM03987J

    Article  CAS  Google Scholar 

  58. Fang X, Xiao SL, Shen MW, Guo R, Wang SY, Shi XY (2011) Fabrication and characterization of water-stable electrospun polyethyleneimine/polyvinyl alcohol nanofibers with super dye sorption capability. N J Chem 35:360–368. https://doi.org/10.1039/c0nj00764a

    Article  CAS  Google Scholar 

  59. Xu AR, Wang JJ, Wang HY (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent system. Green Chem 12:268–275. https://doi.org/10.1039/b916882f

    Article  CAS  Google Scholar 

  60. Xu AR, Wang F (2020) Carboxylate ionic liquid solvent system from 2006 to 2020: thermal properties and application in cellulose processing. Green Chem 22(2020):7622–7664. https://doi.org/10.1039/D0GC02840A

    Article  CAS  Google Scholar 

  61. Bessa A, Henriques B, Goncalves G, Irurueta G, Pereira E, Marques PAAP (2020) Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chem Eng J 398:125587. https://doi.org/10.1016/j.cej.2020.125587

    Article  CAS  Google Scholar 

  62. Geng JJ, Yin YW, Liang QW, Zhu ZJ, Luo HJ (2019) Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: adsorption performance and mechanism. Chem Eng J 361:1497–1510. https://doi.org/10.1016/j.cej.2018.10.141

    Article  CAS  Google Scholar 

  63. Duman O, Tunç S, Polat TG (2015) Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies. Appl Clay Sci 109–110:22–32. https://doi.org/10.1016/j.clay.2015.03.003

    Article  CAS  Google Scholar 

  64. Ayranci E, Duman O (2010) Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions. Chem Eng J 156:70–76. https://doi.org/10.1016/j.cej.2009.09.038

    Article  CAS  Google Scholar 

  65. Duman O, Ayranci E (2010) Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J Hazard Mater 174:359–367. https://doi.org/10.1016/j.jhazmat.2009.09.058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Changsha Science and Technology Plan (kq1902045), Henan Province Science and Technology Research Plan (212102210288) and SRTP Program, Henan University of Science and Technology (2020140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Airong Xu or Rukuan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Duo, T., Wang, Y. et al. Novel Polyethyleneimine/κ-Carrageenan Composite from Facile One-Step Fabrication for the Removal of Copper Ion from Aqueous Solution. J Polym Environ 30, 1001–1011 (2022). https://doi.org/10.1007/s10924-021-02247-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02247-7

Keywords

Navigation