Skip to main content

Advertisement

Log in

A Novel Aloe Vera-Loaded Ethylcellulose/Hydroxypropyl Methylcellulose Nanofibrous Mat Designed for Wound Healing Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Newly, the usage of nanofibers (NFs) as wound dressings with the aim of their rapid healing and prevention of bacterial infection has been considered by researchers. In this regard, we produced the ethylcellulose/hydroxypropyl methylcellulose NFs incorporated with Aloe-vera (EC/HPMC/Alv) by the electrospinning technique. The produced NFs were investigated for their chemical structure, morphological, mechanical, degradation, swelling, cell viability, and antibacterial properties. Amongst the produced NFs, the NF samples containing 10% Alv illustrated the appropriate mechanical properties. The produced NFs did not show any cell cytotoxicity which indicates their good compatibility. Also, NFs containing Alv significantly (P < 0.05) increased cell proliferation and adhesion. In addition, the NFs/Alv sample was indicated antibacterial ability against Staphylococcus aureus (10.21 ± 1.21 mm) and Escherichia coli (5.06 ± 1.3 mm) pathogenic bacteria. As a result, these findings suggest that the produced NFs could be applied as an active mat for wound dressing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El-aassar MR, Ibrahim OM, Fouda MMG et al (2020) Wound healing of nanofiber comprising polygalacturonic/hyaluronic acid embedded silver nanoparticles: in-vitro and in-vivo studies. Carbohydr Polym 238:116175. https://doi.org/10.1016/j.carbpol.2020.116175

    Article  CAS  PubMed  Google Scholar 

  2. Okur ME, Karantas ID, Şenyiğit Z et al (2020) Title page recent trends on wound management; new therapeutic choices based on polymeric carriers Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Katip Çelebi Abstract : wound healing is an unmet therapeutic challenge among medical. Asian J Pharm Sci. https://doi.org/10.1016/j.ajps.2019.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahmadian S, Ghorbani M, Mahmoodzadeh F (2020) Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nano fi brous mats with antibacterial properties for wound healing. Int J Biol Macromol 162:1555–1565. https://doi.org/10.1016/j.ijbiomac.2020.08.059

    Article  CAS  PubMed  Google Scholar 

  4. Wahab A, Ogasawara H, Soo I, Ni Q (2019) Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications. Mater Lett 241:168–171. https://doi.org/10.1016/j.matlet.2019.01.084

    Article  CAS  Google Scholar 

  5. Liu M, Duan XP, Li YM et al (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423. https://doi.org/10.1016/j.msec.2017.03.034

    Article  CAS  Google Scholar 

  6. Akrami M, Tayebi L, Ghorbani M (2020) Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation and cell adhesion studies. New J Chem. https://doi.org/10.1039/d0nj01594f

    Article  Google Scholar 

  7. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol

  8. Yu DG, Wang X, Li XY et al (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9:5665–5672. https://doi.org/10.1016/j.actbio.2012.10.021

    Article  CAS  Google Scholar 

  9. Wang P, Li Y, Zhang C et al (2020) Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nano fi brous fi lm for sustained release of curcumin. Food Chem 308:125599. https://doi.org/10.1016/j.foodchem.2019.125599

    Article  CAS  PubMed  Google Scholar 

  10. Bilbao-sainz C, Chiou B, Valenzuela-medina D et al (2014) Solution blow spun poly ( lactic acid )/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. Eur Polym J 54:1–10. https://doi.org/10.1016/j.eurpolymj.2014.02.004

    Article  CAS  Google Scholar 

  11. Isfahani FR, Tavanai H, Morshed M (2017) Release of aloe vera from electrospun aloe vera-PVA nanofibrous pad. Fibers Polym 18:264–271. https://doi.org/10.1007/s12221-017-6954-9

    Article  CAS  Google Scholar 

  12. Kheradvar SA, Nourmohammadi J, Tabesh H, Bagheri B (2018) Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids Surf B 166:9–16. https://doi.org/10.1016/j.colsurfb.2018.03.004

    Article  CAS  Google Scholar 

  13. Ezhilarasu H, Ramalingam R, Dhand C (2019) Biocompatible Aloe vera and tetracycline hydrochloride loaded hybrid nanofibrous SCA FF olds for skin tissue engineering

  14. Maan AA, Nazir A, Khan MKI et al (2018) The therapeutic properties and applications of aloe vera: a review. J Herb Med 12:1–10

    Article  Google Scholar 

  15. Gainza G, Gutierrez FB, Aguirre JJ et al (2016) Novel Nanofibrous Dressings Containing rhEGF and Aloe vera for wound healing applications. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2016.11.006

    Article  PubMed  Google Scholar 

  16. Garcia-Orue I, Gainza G, Garcia-Garcia P et al (2019) Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications. Int J Pharm 556:320–329. https://doi.org/10.1016/j.ijpharm.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  17. Darzi S, Paul K, Leitan S et al (2021) Immunobiology and application of aloe vera-based scaffolds in tissue engineering. Int J Mol Sci 22:1–19. https://doi.org/10.3390/ijms22041708

    Article  CAS  Google Scholar 

  18. Naseri-nosar M, Farzamfar S (2017) Erythropoietin/aloe polyvinyl alcohol/chitosan sponge-like wound dressing. Vitro In Vivo Stud. https://doi.org/10.1177/0883911517731793

    Article  Google Scholar 

  19. Baghersad S, Bahrami SH, Mohammadi MR et al (2018) Development of biodegradable electrospun gelatin/aloe-vera/poly (ε-caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Mater Sci Eng C 93:367–379

    Article  CAS  Google Scholar 

  20. Hikmawati D, Maharani NP, Putra AP, Siswanto (2020) The effect of ultraviolet exposure on physical properties of electrospun nanofiber membrane based on polyvinyl alcohol and aloe vera. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/KEM.860.244

    Article  Google Scholar 

  21. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  22. Suganya S, Venugopal J, Mary SA et al (2014) Aloe vera incorporated biomimetic nanofibrous scaffold: a regenerative approach for skin tissue engineering. Iran Polym J 23:237–248. https://doi.org/10.1007/s13726-013-0219-2

    Article  CAS  Google Scholar 

  23. Paimushin VN, Firsov VA, Shishkin VM, et al (2020) Erratum to : an investigation into the ASTM E756–05 test standard accuracy on determining the damping properties of materials in tension-compression. 63:420066

  24. Nezhad-Mokhtari P, Akrami-Hasan-Kohal M, Ghorbani M (2020) An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. Int J Biol Macromol 154:198–205. https://doi.org/10.1016/j.ijbiomac.2020.03.112

    Article  CAS  PubMed  Google Scholar 

  25. Ghorbani M, Mahmoodzadeh F, Yavari L, Nezhad-mokhtari P (2020) Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nano fi bers for biomedical application. Int J Biol Macromol 165:1312–1322. https://doi.org/10.1016/j.ijbiomac.2020.09.225

    Article  CAS  Google Scholar 

  26. Ghorbani M, Hamishehkar H, Arsalani N, Entezami AA (2016) Surface decoration of magnetic nanoparticles with folate-conjugated poly(N-isopropylacrylamide-co-itaconic acid): a facial synthesis of dual-responsive nanocarrier for targeted delivery of doxorubicin. Int J Polym Mater Polym Biomater 65:683–694. https://doi.org/10.1080/00914037.2016.1157800

    Article  CAS  Google Scholar 

  27. Sabzichi M, Mohammadian J, Ghorbani M et al (2017) Fabrication of all-trans-retinoic acid-loaded biocompatible precirol: a strategy for escaping dose-dependent side effects of doxorubicin. Colloids Surf B 159:620–628

    Article  CAS  Google Scholar 

  28. Yavari L, Ghorbani M (2021) Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int J Biol Macromol 177:485–494. https://doi.org/10.1016/j.ijbiomac.2021.02.113

    Article  CAS  Google Scholar 

  29. Shi J, Liu W (2020) Preparation of cellulose nanocrystal from tobacco-stem and its application in ethyl cellulose film as a reinforcing agent. Cellulose 27:1393–1406. https://doi.org/10.1007/s10570-019-02904-0

    Article  CAS  Google Scholar 

  30. Dharmalingam K, Anandalakshmi R (2019) International Journal of Biological Macromolecules Fabrication, characterization and drug loading ef fi ciency of citric acid crosslinked NaCMC-HPMC hydrogel fi lms for wound healing drug delivery applications. Int J Biol Macromol 134:815–829. https://doi.org/10.1016/j.ijbiomac.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  31. Furlan R, De Leon SJT, Da Silva ANR (2016) Formation of nanofibers containing aloe vera using a non-conventional electrospinning setup. SBMicro 2016 - 31st Symp Microelectron Technol Devices Chip Mt co-located 29th SBCCI - Circuits Syst Des 6th WCAS - IC Des Cases, 1st INSCIT - Electron Instrum 16th SForum - Undergraduate-Stude. https://doi.org/10.1109/SBMicro.2016.7731327

  32. Amjadi S, Emaminia S, Nazari M et al (2019) Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food Bioprocess Technol 12:1205–1219. https://doi.org/10.1007/s11947-019-02286-y

    Article  CAS  Google Scholar 

  33. Ghorbani M, Roshangar L, Soleimani J (2020) Development of reinforced chitosan/pectin SCA FF old by using the cellulose nanocrystals as nano fi llers: an injectable hydrogel for tissue engineering. Eur Polym J 130:109697. https://doi.org/10.1016/j.eurpolymj.2020.109697

    Article  CAS  Google Scholar 

  34. Rostami M, Ghorbani M, Aman M et al (2019) International Journal of Biological Macromolecules Development of resveratrol loaded chitosan-gellan nano fi ber as a novel gastrointestinal delivery system. Int J Biol Macromol 135:698–705. https://doi.org/10.1016/j.ijbiomac.2019.05.187

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Qiu Y, Chen W, Wei Q (2020) Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. Mater Sci Eng C 109:110536. https://doi.org/10.1016/j.msec.2019.110536

    Article  CAS  Google Scholar 

  36. Rad ZP, Mokhtari J, Abbasi M (2018) Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Mater Sci Eng C 93:356–366

    Article  Google Scholar 

  37. Unnithan AR, Gnanasekaran G, Sathishkumar Y et al (2014) Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    Article  CAS  Google Scholar 

  38. Ghorbani M, Mahmoodzadeh F, Yavari Maroufi L, Nezhad-Mokhtari P (2020) Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nanofibers for biomedical application. Int J Biol Macromol 165:1312–1322. https://doi.org/10.1016/j.ijbiomac.2020.09.225

    Article  CAS  PubMed  Google Scholar 

  39. Peh K, Khan T, Ch’ng H (2000) Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J Pharm Pharm Sci 3:303–311

    CAS  PubMed  Google Scholar 

  40. Cui S, Sun X, Li K et al (2019) Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.109745

    Article  Google Scholar 

  41. Zaman HU, Islam JMM, Khan MA, Khan RA (2011) Physico-mechanical properties of wound dressing material and its biomedical application. J Mech Behav Biomed Mater 4:1369–1375. https://doi.org/10.1016/j.jmbbm.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  42. El-aassar MR, El-beheri NG, Agwa MM et al (2021) International Journal of Biological Macromolecules antibiotic-free combinational hyaluronic acid blend nano fibers for wound healing enhancement. Int J Biol Macromol 167:1552–1563. https://doi.org/10.1016/j.ijbiomac.2020.11.109

    Article  CAS  PubMed  Google Scholar 

  43. Bakhsheshi-rad HR, Fauzi A, Aziz M et al (2020) International Journal of Biological Macromolecules development of the PVA/CS nano fi bers containing silk protein sericin as a wound dressing: in vitro and in vivo assessment. Int J Biol Macromol 149:513–521. https://doi.org/10.1016/j.ijbiomac.2020.01.139

    Article  CAS  PubMed  Google Scholar 

  44. Aydogdu A, Sumnu G, Sahin S (2017) A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: morphology and physicochemical properties a novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nano fibers: morphology and physicochemical. Carbohydr Polym 181:234–246. https://doi.org/10.1016/j.carbpol.2017.10.071

    Article  CAS  PubMed  Google Scholar 

  45. Bölgen N, Menceloğlu YZ, Acatay K et al (2005) In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed 16:1537–1555

    Article  Google Scholar 

  46. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer (Guildf) 49:5603–5621. https://doi.org/10.1016/j.polymer.2008.09.014

    Article  CAS  Google Scholar 

  47. Li S, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly (DL-lactide). Biomaterials 20:35–44

    Article  CAS  Google Scholar 

  48. Ju YM, Park K, Son JS et al (2007). Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation. J Biomed Mater Res B. https://doi.org/10.1002/jbm.b.30943

    Article  Google Scholar 

  49. Jithendra P, Rajam AM, Kalaivani T et al (2013) Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5:7291–7298

    Article  CAS  Google Scholar 

  50. Naseri-Nosar M, Farzamfar S, Salehi M et al (2018) Erythropoietin/aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: in vitro and in vivo studies. J Bioact Compat Polym 33:269–281

    Article  CAS  Google Scholar 

  51. Frankova J, Salem AA, Sahffie NM et al (2020) Chitosan-Glucan complex hollow fibers reinforced collagen wound dressing embedded with Aloe vera. II. Multifunctional properties to promote cutaneous wound healing. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2020.119349

    Article  PubMed  Google Scholar 

  52. Radha MH, Laxmipriya NP (2015) Evaluation of biological properties and clinical effectiveness of Aloe vera: a systematic review. J Tradit Complement Med 5:21–26. https://doi.org/10.1016/j.jtcme.2014.10.006

    Article  PubMed  Google Scholar 

  53. Miguel SP, Ribeiro MP, Coutinho P, Correia IJ (2017) Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers (Basel) 9:183

    Article  Google Scholar 

  54. Danish P, Ali Q, Mm H, Malik A (2020) Antifungal and antibacterial activity of aloe veraplant extract. Biol Clin Sci Res J 2020(1):e004

  55. Aghamohamadi N, Sharifi N, Faridi R, Ahmad S (2019) Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. Mater Sci Eng C 94:445–452. https://doi.org/10.1016/j.msec.2018.09.058

    Article  CAS  Google Scholar 

  56. Nadiger VG, Shukla SR (2016) Antibacterial properties of silk fabric treated with Aloe Vera and silver nanoparticles. J Textile Inst. https://doi.org/10.1080/00405000.2016.1167391

Download references

Acknowledgements

This research was supported by the Nutrition Research Center; Tabriz University of Medical Sciences (Grant Number: 67160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Ghorbani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebian, Z., Tajmohammadi, I., Yavari Maroufi, L. et al. A Novel Aloe Vera-Loaded Ethylcellulose/Hydroxypropyl Methylcellulose Nanofibrous Mat Designed for Wound Healing Application. J Polym Environ 30, 867–877 (2022). https://doi.org/10.1007/s10924-021-02240-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02240-0

Keywords

Navigation