Skip to main content

Advertisement

Log in

Active Biodegradable Film Based on Chitosan and Cenostigma Nordestinum' Extracts for Use in the Food Industry

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bioactive biodegradable films are emerging biomaterials in the food packaging field. This study aims to investigate the effect of different Cenostigma nordestinum extracts (leaves, bark, and exudate bark) on the antioxidant, antimicrobial, and some physicochemical properties of chitosan films. Different concentrations of the extracts were added to the film matrix and the resulting incorporated films were evaluated for their bioactive, optical, mechanical, and water vapor barrier properties. The extracts of C. nordestinum proved to be natural sources of promising bioactive compounds with good antioxidant and antimicrobial properties. The films incorporated with C. nordestinum extracts were opaquer, more resistant to tension, and less permeable to water vapor when compared to chitosan-control films. The incorporation of 300 µg mL−1 of the bark extract in the chitosan film increased the tensile strength from 113.97 ± 0.42 to 164.82 ± 0.85 MPa, and reduced the water vapor permeability from 2.11 ± 0.02 to 1.51 ± 0.04 × 10−10 g (m s Pa)−1. Additionally, the incorporated films presented excellent antioxidant capacity and discrete antimicrobial activity. The ongoing results demonstrate that bioactive chitosan-films incorporated with different C. nordestinum extracts are quite promising for the production of ecologically sustainable packaging for the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Janik H, Sienkiewicz M, Przybytek A et al (2018) Novel biodegradable potato starch-based compositions as candidates in packaging industry, safe for marine environment. Fibers Polym 19:1166–1174. https://doi.org/10.1007/s12221-018-7872-1

    Article  CAS  Google Scholar 

  2. Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste—a review. Procedia Environ Sci 35:701–708. https://doi.org/10.1016/j.proenv.2016.07.069

    Article  CAS  Google Scholar 

  3. Landim APM, Bernardo CO, Martins IBA et al (2016) Sustentabilidade quanto às embalagens de alimentos no Brasil. Polimeros 26:82–92. https://doi.org/10.1590/0104-1428.1897

    Article  Google Scholar 

  4. Al-Tayyar NA, Youssef AM, Al-Hindi RR (2020) Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: a review. Sustain Mater Technol 26:e00215. https://doi.org/10.1016/j.susmat.2020.e00215

    Article  CAS  Google Scholar 

  5. Baygar T (2019) Bioactivity potentials of biodegradable chitosan/gelatin film forming solutions combined with monoterpenoid compounds. J Polym Environ 27:1686–1692. https://doi.org/10.1007/s10924-019-01465-4

    Article  CAS  Google Scholar 

  6. Gao HX, He Z, Sun Q et al (2019) A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr Polym 215:1–7. https://doi.org/10.1016/j.carbpol.2019.03.029

    Article  CAS  PubMed  Google Scholar 

  7. Breda CA, Morgado DL, Assis OBG, Duarte MCT (2017) Processing and characterization of chitosan films with incorporation of ethanolic extract from “pequi” peels. Macromol Res 25:1049–1056. https://doi.org/10.1007/s13233-017-5143-4

    Article  CAS  Google Scholar 

  8. Hemalatha T, UmaMaheswari T, Senthil R et al (2017) Efficacy of chitosan films with basil essential oil: perspectives in food packaging. J Food Meas Charact 11:2160–2170. https://doi.org/10.1007/s11694-017-9601-7

    Article  Google Scholar 

  9. Mir SA, Dar BN, Wani AA, Shah MA (2018) Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol 80:141–154. https://doi.org/10.1016/j.tifs.2018.08.004

    Article  CAS  Google Scholar 

  10. Leceta I, Guerrero P, Cabezudo S, De la Caba K (2013) Environmental assessment of chitosan-based films. J Clean Prod 41:312–318. https://doi.org/10.1016/j.jclepro.2012.09.049

    Article  CAS  Google Scholar 

  11. Carlos R, Carvalho S, Lúcia S (2015) Bioatividade da raiz de Poincianella bracteosa (Tul.) L. P. Queiroz (Fabaceae) sobre larvas do Aedes aegypti (Linnaeus, 1762) (Diptera : Culicidae). 259–264. https://doi.org/http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/3399

  12. Monteiro JM, De Souza JSN, Neto EMFL et al (2014) Does total tannin content explain the use value of spontaneous medicinal plants from the Brazilian semi-arid region? Rev Bras Farmacogn 24:116–123. https://doi.org/10.1016/j.bjp.2014.02.001

    Article  Google Scholar 

  13. de Sousa LMS, Santos BNG, Medeiros M, das GF et al (2021) Poincianella pyramidalis (Tul) L.P. Queiroz: a review on traditional uses, phytochemistry and biological-pharmacological activities. J Ethnopharmacol 264:113181. https://doi.org/10.1016/j.jep.2020.113181

    Article  CAS  PubMed  Google Scholar 

  14. Azmir J, Zaidul ISM, Rahman MM et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

    Article  CAS  Google Scholar 

  15. Matos FJA (2009) Introdução à fitoquímica experimental. UFC, Fortaleza

    Google Scholar 

  16. De Veras BO, Queiroz Y, Granja F et al (2019) Algrizea Minor Sobral, Faria & Proença antinociceptive, antimicrobial and antioxidant activity of essential oil. Nat Prod Res 0:1–5. https://doi.org/10.1080/14786419.2019.1602832

    Article  CAS  Google Scholar 

  17. De Melo JG, De Sousa Araújo TA, De Almeida Castro VTN et al (2010) Antiproliferative activity, antioxidant capacity and tannin content in plants of semi-arid northeastern Brazil. Molecules 15:8534–8542. https://doi.org/10.3390/molecules15128534

    Article  CAS  Google Scholar 

  18. Prazeres LDKT, Aragão TP, Brito SA et al (2019) Antioxidant and Antiulcerogenic Activity of the Dry Extract of Pods of Libidibia ferrea Mart. ex T. (Fabaceae). 23 p. https://doi.org/10.1155/2019/1983137

  19. dos Reis AS, Diedrich C, de Moura C et al (2017) Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at – 15°C. LWT Food Sci Technol 76:306–313. https://doi.org/10.1016/j.lwt.2016.05.033

    Article  CAS  Google Scholar 

  20. CLSI (2018) Performance standards for antimicrobial susceptibility testing. 28th. Clinical Laboratory Standards Institute, Wayne

    Google Scholar 

  21. Snoussi M, Noumi E, Najla RP (2018) Antioxidant properties and anti-quorum sensing potential of Carum copticum essential oil and phenolics against Chromobacterium violaceum. J Food Sci Technol. https://doi.org/10.1007/s13197-018-3219-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Souza MP, Vaz AFM, Silva HD et al (2015) Development and characterization of an active chitosan-based film containing quercetin. Food Bioprocess Technol 8:2183–2191. https://doi.org/10.1007/s11947-015-1580-2

    Article  CAS  Google Scholar 

  23. Hamdi M, Nasri R, Li S, Nasri M (2019) Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: biological potential and structural, thermal, and mechanical characterization. Food Hydrocoll 89:802–812. https://doi.org/10.1016/j.foodhyd.2018.11.062

    Article  CAS  Google Scholar 

  24. ASTM- American Society for Testing and Material (2016) ASTM D882- 12: standard test method for tensile properties of thin plastic sheeting. ASTM, West Conshohocken

    Google Scholar 

  25. Souza MP, Vaz AFM, Costa TB et al (2018) Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food Bioprocess Technol 11:1050–1060. https://doi.org/10.1007/s11947-018-2077-6

    Article  CAS  Google Scholar 

  26. Li Y, Kong D, Fu Y et al (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89. https://doi.org/10.1016/j.plaphy.2020.01.006

    Article  CAS  PubMed  Google Scholar 

  27. Thiago PC, Joanda PReS, de Francinalva D et al (2015) Traditional use, phytochemistry and biological activities of Poincianella pyramidalys (Tul.) LP Queiroz. Afr J Biotechnol 14:3350–3358. https://doi.org/10.5897/ajb2015.14794

    Article  CAS  Google Scholar 

  28. Bahia MV, David JP, David JM et al (2010) Occurrence of biflavones in leaves of Caesalpinia pyramidalis specimens. Quim Nova 33:1297–1300

    Article  CAS  Google Scholar 

  29. Saraiva AM, Saraiva CL, Gonçalves AM et al (2012) Antimicrobial activity and bioautographic study of antistaphylococcal components from Caesalpinia pyramidalis Tull. Braz J Pharm Sci 48:147–154. https://doi.org/10.1590/S1984-82502012000100016

    Article  CAS  Google Scholar 

  30. Bahia MV, Dos Santos JB, David JP, David JM (2005) Biflavonoids and other phenolics from Caesalpinia pyramidalis (Fabaceae). J Braz Chem Soc 16:1402–1405. https://doi.org/10.1590/S0103-50532005000800017

    Article  CAS  Google Scholar 

  31. Aryal S, Baniya MK, Danekhu K et al (2019) Total Phenolic content, Flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 8. https://doi.org/10.3390/plants8040096

  32. Da Silva CHTP, Da Silva Peixoto Sobrinho TJ, De Almeida E, Castro VTN et al (2011) Antioxidant capacity and phenolic content of Caesalpinia pyramidalis Tul. and Sapium glandulosum (L.) morong from northeastern Brazil. Molecules 16:4728–4739. https://doi.org/10.3390/molecules16064728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trugilho PF, Akira FM, Tarcísio JL et al (2003) Determinação do teor de taninos na casca de Eucalyptus spp. Cerne 9:246–254

    Google Scholar 

  34. Neupane P, Lamichhane J (2020) Estimation of total phenolic content, total flavonoid content and antioxidant capacities of five medicinal plants from Nepal. Vegetos 33:360–366. https://doi.org/10.1007/s42535-020-00116-7

    Article  Google Scholar 

  35. Benzidia B, Barbouchi M, Hammouch H et al (2019) Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. J King Saud Univ Sci 31:1175–1181. https://doi.org/10.1016/j.jksus.2018.05.022

    Article  Google Scholar 

  36. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523. https://doi.org/10.1016/j.fitote.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  37. Hauser C, Peñaloza A, Rodríguez F et al (2014) Promising antimicrobial and antioxidant extracts of Murta leaves (Ugni molinae Turcz): Shelf-life extension and food safety. Food Packag Shelf Life 1:77–85. https://doi.org/10.1016/j.fpsl.2014.01.003

    Article  Google Scholar 

  38. Olszewska MA, Gędas A, Simões M (2020) Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res Int 134:109214. https://doi.org/10.1016/j.foodres.2020.109214

    Article  CAS  PubMed  Google Scholar 

  39. Hemeg HA, Moussa IM, Ibrahim S et al (2020) Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2020.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chaves TP, Fernandes FHA, Santana CP et al (2016) Evaluation of the interaction between the Poincianella pyramidalis (Tul.) LP Queiroz extract and antimicrobials using biological and analytical models. PLoS ONE 11:1–23. https://doi.org/10.1371/journal.pone.0155532

    Article  CAS  Google Scholar 

  41. Yong H, Wang X, Zhang X et al (2019) Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll 94:93–104. https://doi.org/10.1016/j.foodhyd.2019.03.012

    Article  CAS  Google Scholar 

  42. Yong H, Wang X, Bai R et al (2019) Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll 90:216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015

    Article  CAS  Google Scholar 

  43. Akyuz L, Kaya M, Koc B et al (2017) Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int J Biol Macromol 105:1401–1411. https://doi.org/10.1016/j.ijbiomac.2017.08.161

    Article  CAS  PubMed  Google Scholar 

  44. Talón E, Trifkovic KT, Nedovic VA et al (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 157:1153–1161. https://doi.org/10.1016/j.carbpol.2016.10.080

    Article  CAS  PubMed  Google Scholar 

  45. Kan J, Liu J, Yong H et al (2019) Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int J Biol Macromol 140:384–392. https://doi.org/10.1016/j.ijbiomac.2019.08.155

    Article  CAS  PubMed  Google Scholar 

  46. Bajić M, Ročnik T, Oberlintner A et al (2019) Natural plant extracts as active components in chitosan-based films: a comparative study. Food Packag Shelf Life 21:100365. https://doi.org/10.1016/j.fpsl.2019.100365

    Article  Google Scholar 

  47. Zhang X, Lian H, Shi J et al (2020) Plant extracts such as pine nut shell, peanut shell and jujube leaf improved the antioxidant ability and gas permeability of chitosan films. Int J Biol Macromol 148:1242–1250. https://doi.org/10.1016/j.ijbiomac.2019.11.108

    Article  CAS  PubMed  Google Scholar 

  48. Qin YY, Zhang ZH, Li L et al (2015) Physio-mechanical properties of an active chitosan film incorporated with montmorillonite and natural antioxidants extracted from pomegranate rind. J Food Sci Technol 52:1471–1479. https://doi.org/10.1007/s13197-013-1137-1

    Article  CAS  PubMed  Google Scholar 

  49. Silva-Weiss A, Bifani V, Ihl M et al (2013) Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll 31:458–466. https://doi.org/10.1016/j.foodhyd.2012.11.028

    Article  CAS  Google Scholar 

  50. Deshmukh AR, Aloui H, Khomlaem C et al (2021) Biodegradable films based on chitosan and defatted Chlorella biomass: Functional and physical characterization. Food Chem 337:127777. https://doi.org/10.1016/j.foodchem.2020.127777

    Article  CAS  PubMed  Google Scholar 

  51. Gursoy M, Sargin I, Mujtaba M et al (2018) False flax (Camelina sativa) seed oil as suitable ingredient for the enhancement of physicochemical and biological properties of chitosan films. Int J Biol Macromol 114:1224–1232. https://doi.org/10.1016/j.ijbiomac.2018.04.029

    Article  CAS  PubMed  Google Scholar 

  52. Mujtaba M, Salaberria AM, Andres MA et al (2017) Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int J Biol Macromol 104:944–952. https://doi.org/10.1016/j.ijbiomac.2017.06.127

    Article  CAS  PubMed  Google Scholar 

  53. Riaz A, Lei S, Akhtar HMS et al (2018) Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int J Biol Macromol 114:547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126

    Article  CAS  PubMed  Google Scholar 

  54. Mira-sánchez MD, Castillo-sánchez J, Morillas-ruiz JM (2019) Health Sciences PhD program, Universidad Católica de Murcia UCAM, Campus de los Jerónimos Food Technology & Nutrition Dept ., Universidad Católica San Antonio de Murcia (UCAM). Food Chem 125688. https://doi.org/10.1016/j.foodchem.2019.125688

  55. Koc B, Akyuz L, Cakmak YS et al (2020) Production and characterization of chitosan-fungal extract films. Food Biosci 35:100545. https://doi.org/10.1016/j.fbio.2020.100545

    Article  CAS  Google Scholar 

  56. Kaya M, Ravikumar P, Ilk S et al (2018) Production and characterization of chitosan based edible films from Berberis crataegina’s fruit extract and seed oil. Innov Food Sci Emerg Technol 45:287–297. https://doi.org/10.1016/j.ifset.2017.11.013

    Article  CAS  Google Scholar 

  57. Kaya M, Khadem S, Cakmak YS et al (2018) Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv 8:3941–3950. https://doi.org/10.1039/c7ra12070b

    Article  CAS  Google Scholar 

  58. Ruiz-Navajas Y, Viuda-Martos M, Sendra E et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30:386–392. https://doi.org/10.1016/j.foodcont.2012.07.052

    Article  CAS  Google Scholar 

  59. Xu D, Chen T, Liu Y (2020) The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polym Bull. https://doi.org/10.1007/s00289-020-03294-1

    Article  Google Scholar 

  60. Ballester-Costa C, Sendra E, Fernández-López J, Viuda-Martos M (2016) Evaluation of the antibacterial and antioxidant activities of chitosan edible films incorporated with organic essential oils obtained from four Thymus species. J Food Sci Technol 53:3374–3379. https://doi.org/10.1007/s13197-016-2312-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shariatinia Z, Fazli M (2015) Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll 46:112–124. https://doi.org/10.1016/j.foodhyd.2014.12.026

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq), Grant Number 423993/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marthyna Pessoa de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, J.M.A., da Silva Júnior, E.D., Oliveira de Veras, B. et al. Active Biodegradable Film Based on Chitosan and Cenostigma Nordestinum' Extracts for Use in the Food Industry. J Polym Environ 30, 217–231 (2022). https://doi.org/10.1007/s10924-021-02192-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02192-5

Keywords

Navigation