Skip to main content
Log in

Simultaneous Removal of Cationic and Anionic Dyes from Binary Solutions Using Carboxymethyl Chitosan Based IPN Type Resin

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel bead form IPN type resin comprising poly (2-Dimethylaminoethyl) methacrylate and carboxymethyl chitosan networks with a high dye adsorption capacity. The adsorbent was synthesized by a combination of serial reactions, including bead formation, cross-linking, and carboxymethylation of chitosan, then the photo-polymerization of DMAEM inside these beads. To assess the simultaneous basic and acidic dye removal efficacy (Safranine T; ST and Indigo carmine; IC) and characteristics, batch adsorption experiments were carried out. The effects of different parameters such as contact time, adsorbent dosage, initial dye concentration (25–400 ppm), and pH on the adsorption process were investigated. Under optimized conditions (adsorbent dosage, 1.5 g/L; pH, 3; initial concentration 250 ppm (125 ppm ST + 125 ppm IC), temperature, 25 °C), adsorption studies showed that the resin has significant high adsorption capacity (qe = 126 and 130.5 mg/g for ST and IC, respectively). Adsorption isotherm studies showed that Langmuir, Langmuir–Freundlich, Redlich-Peterson, and D-R models fitted the adsorption equilibrium data quite well, while the Freundlich model gave poor fittings. Besides, for all initial dye concentrations in the range of 25–400 ppm in the binary mixture (except 12.5 ppm IC initial concentration), the process is favorable. According to adsorption model calculations, the adsorption takes place with a monolayer coverage, and the main dominant force for the system is weak interactions indicating physical adsorption. Kinetics studies showed that for both dye, the adsorption process could be expressed very well by the PFO model and PSO; however, the PFO model is somewhat better in predicting the experimental qe values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ceyhan O, Baybaş D (2001) Adsorption of some textile dyes by hexadecyltrimethylammonium bentonite. Turk J Chem 25:193–200

    CAS  Google Scholar 

  2. Gupta VK, Suhas, (2009) Application of low-cost adsorbents for dye removal: a review. J Environ Manag 90:2313

    Article  CAS  Google Scholar 

  3. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  4. Ali N, Hameed A, Ahmed S (2009) Physicochemical characterization and Bioremediation perspective of textile effluent, dyes and metals by indigenous Bacteria. J Hazard Mater 164:322–328. https://doi.org/10.1016/j.jhazmat.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  5. Buthelezi SP, Olaniran AO, Pillay B (2012) Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules 17:14260–14274. https://doi.org/10.3390/molecules171214260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alver E, Metin AT (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67. https://doi.org/10.1016/j.cej.2012.06.038

    Article  CAS  Google Scholar 

  7. Vakili M, Rafatullah M, Salamatinia B et al (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130. https://doi.org/10.1016/J.CARBPOL.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  8. Abdullah AZ, Salamatinia B, Kamaruddin AH (2009) Application of response surface methodology for the optimization of NaOH treatment on oil palm frond towards improvement in the sorption of heavy metals. Desalination 244:227–238. https://doi.org/10.1016/j.desal.2008.06.004

    Article  CAS  Google Scholar 

  9. Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environ Sci Technol 41:1439–1443. https://doi.org/10.1021/es061499l

    Article  CAS  PubMed  Google Scholar 

  10. Chafi M, Gourich B, Essadki AH et al (2011) Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination 281:285–292. https://doi.org/10.1016/j.desal.2011.08.004

    Article  CAS  Google Scholar 

  11. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98. https://doi.org/10.1016/j.cej.2006.01.015

    Article  CAS  Google Scholar 

  12. García-Gabaldón M, Pérez-Herranz V, García-Antón J, Guiñón JL (2006) Electrochemical recovery of tin from the activating solutions of the electroless plating of polymers. Galvanostatic operation. Sep Purif Technol 51:143–149. https://doi.org/10.1016/j.seppur.2005.12.028

    Article  CAS  Google Scholar 

  13. Mohammadi T, Razmi A, Sadrzadeh M (2004) Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination 167:379–385. https://doi.org/10.1016/j.desal.2004.06.150

    Article  CAS  Google Scholar 

  14. Emik S (2014) Preparation and characterization of an IPN type chelating resin containing amino and carboxyl groups for removal of Cu(II) from aqueous solutions. React Funct Polym 75:63–74. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2013.12.006

    Article  CAS  Google Scholar 

  15. Choy KKH, Porter JF, McKay G (2000) Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J Chem Eng Data 45:575–584. https://doi.org/10.1021/je9902894

    Article  CAS  Google Scholar 

  16. Saha TK, Bhoumik NC, Karmaker S et al (2011) Adsorption characteristics of reactive black 5 from aqueous solution onto chitosan. Clean: Soil, Air, Water 39:984–993. https://doi.org/10.1002/clen.201000315

    Article  CAS  Google Scholar 

  17. Güçlü G, Keleş S, Güçlü K (2006) Removal of Cu2+ ions from aqueous solutions by starch-graft-acrylic acid hydrogels. Polym Plast Technol Eng 45:55–59. https://doi.org/10.1080/03602550500373741

    Article  CAS  Google Scholar 

  18. Güçlü G, Gürdaǧ G, Özgümüş S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90:2034–2039. https://doi.org/10.1002/app.12728

    Article  CAS  Google Scholar 

  19. Keleş S, Güçlü G (2006) Competitive removal of heavy metal ions by starch-graft-acrylic acid copolymers. Polym Plast Technol Eng 45:365–371. https://doi.org/10.1080/03602550600553291

    Article  CAS  Google Scholar 

  20. Güçlü G, Güçlü K, Keleş S (2007) Competitive removal of nickel (II), cobalt (II), and zinc (II) ions from aqueous solutions by starch-graft-acrylic acid copolymers. J Appl Polym Sci 106:1800–1805. https://doi.org/10.1002/app.26866

    Article  CAS  Google Scholar 

  21. Güçlü G, Keleş S (2007) Removal of basic dyes from aqueous solutions using starch-graft-acrylic acid copolymers. J Appl Polym Sci 106:2422–2426. https://doi.org/10.1002/app.26778

    Article  CAS  Google Scholar 

  22. Al E, Güclü G, Ïyim TB et al (2008) Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. J Appl Polym Sci 109:16–22. https://doi.org/10.1002/app.27968

    Article  CAS  Google Scholar 

  23. Iyim TB, Güçlü G (2009) Removal of basic dyes from aqueous solutions using natural clay. Desalination 249:1377–1379. https://doi.org/10.1016/j.desal.2009.06.020

    Article  CAS  Google Scholar 

  24. Dalaran M, Emik S, Güçlü G et al (2009) Removal of acidic dye from aqueous solutions using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels. Polym Bull 63:159–171. https://doi.org/10.1007/s00289-009-0077-4

    Article  CAS  Google Scholar 

  25. Güçlü G, Al E, Emik S et al (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by Starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346. https://doi.org/10.1007/s00289-009-0217-x

    Article  CAS  Google Scholar 

  26. Guibal E, McCarrick P, Tobin JM (2003) Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Sep Sci Technol 38:3049–3073. https://doi.org/10.1081/SS-120022586

    Article  CAS  Google Scholar 

  27. Iida Y, Kozuka T, Tuziuti T, Yasui K (2004) Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas. Ultrasonics 42:635–639. https://doi.org/10.1016/j.ultras.2004.01.092

    Article  CAS  PubMed  Google Scholar 

  28. Bhatnagar A, Jain AK (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interface Sci 281:49–55. https://doi.org/10.1016/j.jcis.2004.08.076

    Article  CAS  PubMed  Google Scholar 

  29. Wang XS, Zhou Y, Jiang Y, Sun C (2008) The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater 157:374–385. https://doi.org/10.1016/j.jhazmat.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  30. Öztürk A, Malkoc E (2014) Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile. Appl Surf Sci 299:105–115. https://doi.org/10.1016/j.apsusc.2014.01.193

    Article  CAS  Google Scholar 

  31. Fernandes AN, Almeida CAP, Menezes CTB et al (2007) Removal of methylene blue from aqueous solution by peat. J Hazard Mater 144:412–419. https://doi.org/10.1016/j.jhazmat.2006.10.053

    Article  CAS  PubMed  Google Scholar 

  32. Özkahraman B, Özbaş Z (2020) Removal of Al(III) ions using gellan gum-acrylic acid double network hydrogel. J Polym Environ 28:689–698. https://doi.org/10.1007/s10924-019-01636-3

    Article  CAS  Google Scholar 

  33. Kyzas GZ, Bikiaris DN, Mitropoulos AC (2017) Chitosan adsorbents for dye removal: a review. Polym Int 66:1800–1811. https://doi.org/10.1002/pi.5467

    Article  CAS  Google Scholar 

  34. Zhou Y, Hu Y, Huang W et al (2018) A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chem Eng J 341:47–57. https://doi.org/10.1016/j.cej.2018.01.155

    Article  CAS  Google Scholar 

  35. Vega-Negron AL, Alamo-Nole L, Perales-Perez O et al (2018) Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment. Int J Environ Res 12:59–65. https://doi.org/10.1007/s41742-018-0066-2

    Article  CAS  Google Scholar 

  36. Rastgordani M, Zolgharnein J, Mahdavi V (2020) Derivative spectrophotometry and multivariate optimization for simultaneous removal of Titan yellow and Bromophenol blue dyes using polyaniline@SiO2 nanocomposite. Microchem J 155:104717. https://doi.org/10.1016/j.microc.2020.104717

    Article  CAS  Google Scholar 

  37. Li J, Gong J-L, Zeng G-M et al (2018) Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. J Colloid Interface Sci 527:267–279. https://doi.org/10.1016/j.jcis.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  38. Archin S, Sharifi SH, Asadpour G (2019) Optimization and modeling of simultaneous ultrasound-assisted adsorption of binary dyes using activated carbon from tobacco residues: response surface methodology. J Clean Prod 239:118136. https://doi.org/10.1016/j.jclepro.2019.118136

    Article  CAS  Google Scholar 

  39. Abdi J, Mahmoodi NM, Vossoughi M, Alemzadeh I (2019) Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems. Microporous Mesoporous Mater 273:177–188. https://doi.org/10.1016/j.micromeso.2018.06.040

    Article  CAS  Google Scholar 

  40. Sharma K, Vyas RK, Singh K, Dalai AK (2018) Degradation of a synthetic binary dye mixture using reactive adsorption: experimental and modeling studies. J Environ Chem Eng 6:5732–5743. https://doi.org/10.1016/j.jece.2018.08.069

    Article  CAS  Google Scholar 

  41. Bagtash M, Zolgharnein J (2018) Hybrid central composite design for simultaneous optimization of removal of methylene blue and alizarin red S from aqueous solutions using Vitis tree leaves. J Chemom 32:e2960. https://doi.org/10.1002/cem.2960

    Article  CAS  Google Scholar 

  42. Zolgharnein J, Bagtash M, Shariatmanesh T (2015) Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochim Acta A Mol Biomol Spectrosc 137:1016–1028. https://doi.org/10.1016/j.saa.2014.08.115

    Article  CAS  PubMed  Google Scholar 

  43. Dil AA, Vafaei A, Ghaedi AM et al (2018) Multi-responses optimization of simultaneous adsorption of methylene blue and malachite green dyes in binary aqueous system onto Ni:FeO(OH)-NWs-AC using experimental design: derivative spectrophotometry method. Appl Organomet Chem 32:e4148. https://doi.org/10.1002/aoc.4148

    Article  CAS  Google Scholar 

  44. Jayalakshmi R, Jeyanthi J (2019) Simultaneous removal of binary dye from textile effluent using cobalt ferrite-alginate nanocomposite: performance and mechanism. Microchem J 145:791–800. https://doi.org/10.1016/j.microc.2018.11.047

    Article  CAS  Google Scholar 

  45. Bagheri AR, Ghaedi M, Asfaram A et al (2016) Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparticles loaded on activated carbon using second-derivative spectrophotometry. J Taiwan Inst Chem Eng 65:212–224. https://doi.org/10.1016/j.jtice.2016.05.004

    Article  CAS  Google Scholar 

  46. Gupta TB, Lataye DH (2018) Adsorption of indigo carmine and methylene blue dye: Taguchi’s design of experiment to optimize removal efficiency. Sadhana - Acad Proc Eng Sci 43:1–13. https://doi.org/10.1007/s12046-018-0931-x

    Article  CAS  Google Scholar 

  47. Sumalatha B, Kumar YP, Kumar KK et al (2014) Biological and chemical sciences removal of indigo carmine from aqueous solution by using activated carbon. Res J Pharm Biol Chem 5:1–12

    Google Scholar 

  48. Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100:5348–5351. https://doi.org/10.1016/j.biortech.2009.05.054

    Article  CAS  PubMed  Google Scholar 

  49. Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2020) Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbohydr Polym 234:115890. https://doi.org/10.1016/J.CARBPOL.2020.115890

    Article  CAS  PubMed  Google Scholar 

  50. Volesky B (2003) Sorption and biosorption. BV Sorbex, Montreal

    Google Scholar 

  51. Wang L, Li Q, Wang A (2010) Adsorption of cationic dye on N, O-carboxymethyl-chitosan from aqueous solutions: equilibrium, kinetics, and adsorption mechanism. Polym Bull 65:961–975. https://doi.org/10.1007/s00289-010-0363-1

    Article  CAS  Google Scholar 

  52. Karadaǧ E, Üzüm ÖB (2012) A study on water and dye sorption capacities of novel ternary acrylamide/sodium acrylate/PEG semi IPN hydrogels. Polym Bull 68:1357–1368. https://doi.org/10.1007/s00289-011-0635-4

    Article  CAS  Google Scholar 

  53. Greluk M, Hubicki Z (2013) Effect of basicity of anion exchangers and number and positions of sulfonic groups of acid dyes on dyes adsorption on macroporous anion exchangers with styrenic polymer matrix. Chem Eng J 215–216:731–739. https://doi.org/10.1016/j.cej.2012.11.051

    Article  CAS  Google Scholar 

  54. Ho YS, McKay G (1998) A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot. https://doi.org/10.1205/095758298529696

    Article  Google Scholar 

  55. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  56. Zafar S, Khalid N, Daud M, Mirza ML (2015) Kinetic studies of the adsorption of thorium ions onto rice husk from aqueous media : linear and nonlinear approach. Nucleus 1:14–19

    Google Scholar 

  57. Özkahraman B, Bal A, Acar I, Güçlü G (2011) Adsorption of brilliant green from aqueous solutions onto crosslinked chitosan graft copolymers. Clean: Soil, Air, Water 39:1001–1006. https://doi.org/10.1002/clen.201000337

    Article  CAS  Google Scholar 

  58. Dalaran M, Emik S, Güçlü G et al (2011) Study on a novel polyampholyte nanocomposite superabsorbent hydrogels: synthesis, characterization and investigation of removal of indigo carmine from aqueous solution. Desalination 279:170–182. https://doi.org/10.1016/j.desal.2011.06.004

    Article  CAS  Google Scholar 

  59. Socrates G (2001) Infrared and Raman characteristic group frequencies. Tables and charts

Download references

Acknowledgements

The authors thank Prof. Tulin Banu İyim for her assistance in the laboratory.

Funding

This work was supported by the Research Fund of the Istanbul University—Cerrahpaşa; Grant Number 54352. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

SY and EY performed the synthesis and adsorption experiments. SE managed the project studies, helped in the experimental data evolution and wrote the paper. All authors discussed the results and commented on the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the İstanbul University-Cerrahpaşa Research Fund.

Corresponding author

Correspondence to Serkan Emik.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emik, S., Işık, S. & Yıldırım, E. Simultaneous Removal of Cationic and Anionic Dyes from Binary Solutions Using Carboxymethyl Chitosan Based IPN Type Resin. J Polym Environ 29, 1963–1977 (2021). https://doi.org/10.1007/s10924-020-02016-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02016-y

Keywords

Navigation