Skip to main content
Log in

Barrier Properties of PVA/TiO2/MMT Mixed-Matrix Membranes for Food Packaging

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

One of the important challenges in food industries is to achieve sufficient gas barrier properties for packaging films. Films made of polyvinyl alcohol (PVA) are commonly used for food packaging and are sometimes used with embedded nanoparticles. In this investigation, PVA nanocomposite films were prepared using solution-casting method with different concentrations of montmorillonite (MMT) and titanium oxide (TiO2) nanoparticles. A response surface methodology (RSM), based on three-level factorial design, was implemented to model and optimize the effect of the concentrations of the nanofillers on the barrier properties of thin nanocomposite films. The viscosity of the polymer-forming solution increased when nanoparticles were incorporated in the polymer matrix. SEM micrographs showed a good distribution of nanofillers at low concentration whereas some aggregation was observed at higher nanofiller loadings. Transparency of PVA-based thin films decreased with an increase of TiO2/MMT loading. A significant increase in the Young ̓s modulus occurred with an increase in the loading of nanoparticles whereas the tensile strength and elongation at the breakpoint both decreased. Results for PVA/MMT/TiO2 nanocomposite films showed a decrease in the oxygen transmission rate and water vapor permeability compared to a neat PVA membrane. The particle loading leading to optimum barrier properties for nanocomposite films was a combined loading of 1 wt% TiO2 and 4 wt% MMT.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar S, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH (2018) Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 80:1–38. https://doi.org/10.1016/j.progpolymsci.2018.03.001

    Article  CAS  Google Scholar 

  2. Selke SE, Culter JD (2016) Plastics packaging: properties, processing, applications, and regulations Carl Hanser Verlag GmbH Co KG.

  3. Silvério HA, Neto WPF, Pasquini D (2013) Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly (vinyl alcohol) nanocomposites. J Nanomater 2013:74. https://doi.org/10.1155/2013/289641

    Article  CAS  Google Scholar 

  4. Molki B, Heidarian P, Aframehr WM, Nasri-Nasrabadi B, Bahrami B, Ahmadi M, Bagheri R (2019) Properties investigation of polyvinyl alcohol barrier films reinforced by calcium carbonate nanoparticles. Mater Res Express 6(5):055311. https://doi.org/10.1088/2053-1591/ab0315

    Article  CAS  Google Scholar 

  5. Pelissari FM, Grossmann MV, Yamashita F, Pineda EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch− chitosan films incorporated with oregano essential oil. J Agric Food Chem 57(16):7499–7504. https://doi.org/10.1021/jf9002363

    Article  CAS  PubMed  Google Scholar 

  6. Tang X, Kumar P, Alavi S, Sandeep K (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442. https://doi.org/10.1080/10408398.2010.500508

    Article  CAS  PubMed  Google Scholar 

  7. Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) ‘Green’composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46(8):2710–2721. https://doi.org/10.1016/j.polymer.2005.01.027

    Article  CAS  Google Scholar 

  8. Muratore G, Nobile D, Buonocore G, Lanza C, Asmundo N (2005) The influence of using biodegradable packaging films on the quality decay kinetic of plum tomato (PomodorinoDatterino®). J Food Eng 67(4):393–399. https://doi.org/10.1016/j.jfoodeng.2004.05.006

    Article  Google Scholar 

  9. Sundaram J, Pant J, Goudie MJ, Mani S, Handa H (2016) Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose–chitosan packaging membranes. J Agric Food Chem 64(25):5260–5266. https://doi.org/10.1021/acs.jafc.6b01936

    Article  CAS  PubMed  Google Scholar 

  10. Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350. https://doi.org/10.1016/j.jfoodeng.2012.02.012

    Article  CAS  Google Scholar 

  11. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids 41:265–273. https://doi.org/10.1016/j.foodhyd.2014.04.023

    Article  CAS  Google Scholar 

  12. López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P (2013) Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem 61(1):260–267. https://doi.org/10.1021/jf304006y

    Article  CAS  PubMed  Google Scholar 

  13. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs. https://doi.org/10.4172/2329-6631.1000112

    Article  Google Scholar 

  14. Yun X, Dong T (2017) Fabrication of high-barrier plastics and its application in food packaging, In Food packaging, Elsevier. pp. 147–184. https://doi.org/https://doi.org/10.1016/B978-0-12-804302-8.00005-4.

  15. Kaler V, Pandel U, Duchaniya R (2018) Development of TiO2/PVA nanocomposites for application in solar cells. Mater Today 5(2):6279–6287. https://doi.org/10.1016/j.matpr.2017.12.237

    Article  CAS  Google Scholar 

  16. Akindoyo JO, Ismail NH, Mariatti M (2019) Performance of poly (vinyl alcohol) nanocomposite reinforced with hybrid TEMPO mediated cellulose-graphene filler. Polym Test 80:106140. https://doi.org/10.1016/j.polymertesting.2019.106140

    Article  CAS  Google Scholar 

  17. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B 100(5):1451–1457. https://doi.org/10.1002/jbm.b.32694

    Article  CAS  Google Scholar 

  18. Guirguis OW, Moselhey MT (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 4(1):57. https://doi.org/10.4236/ns.2012.41009

    Article  CAS  Google Scholar 

  19. Yu Z, Li B, Chu J, Zhang P (2018) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 184:214–220. https://doi.org/10.1016/j.carbpol.2017.12.043

    Article  CAS  PubMed  Google Scholar 

  20. Youssef HF, El-Naggar ME, Fouda FK, Youssef AM (2019a) Antimicrobial packaging film based on biodegradable CMC/PVA-zeolite doped with noble metal cations. Food Packag Shelf Life 22:100378. https://doi.org/10.1016/j.fpsl.2019.100378

    Article  Google Scholar 

  21. Woo JY, Shin EJ, Lee YH (2010) Effect of boric acid treatment on the crystallinity and drawability of poly (vinyl alcohol)–iodine complex films. Polym Bull 65(2):169–180. https://doi.org/10.1007/s00289-010-0279-9

    Article  CAS  Google Scholar 

  22. Manikandan K, Yelilarasi A, Senthamaraikannan P, Saravanakumar S, Khan A, Asiri AM (2019) A green-nanocomposite film based on poly (vinyl alcohol)/Eleusine coracana: structural, thermal, and morphological properties. Int J Polym Anal Charact. https://doi.org/10.1080/1023666X.2019.1567087

    Article  Google Scholar 

  23. Wagner Jr JR (2016) Blown film, cast film, and lamination processes multilayer flexible packaging, 137–145 William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-37100-1.00010-7.

  24. Ding J, Zhao C, Zhao L, Li Y, Xiang D (2018) Synergistic effect of α-ZrP and graphene oxide nanofillers on the gas barrier properties of PVA films. J Appl Polym Sci 135(27):46455. https://doi.org/10.1002/app.46455

    Article  CAS  Google Scholar 

  25. Yu HY, Qin ZY, Sun B, Yang XG, Yao JM (2014) Reinforcement of transparent poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos Sci Technol 94:96–104. https://doi.org/10.1016/j.compscitech.2014.01.018

    Article  CAS  Google Scholar 

  26. Arora R, Mandal UK, Sharma P, Srivastav A (2015) Synthesis and thermal properties of polyaniline-TiO2 nanocomposites PVA based film. Mater Today 2(4–5):2215–2225. https://doi.org/10.1016/j.matpr.2015.07.241

    Article  Google Scholar 

  27. Huang JY, Limqueco J, Chieng YY, Li X, Zhou W (2017) Performance evaluation of a novel food packaging material based on clay/polyvinyl alcohol nanocomposite. Innov Food Sci Emerg Technol 43:216–222. https://doi.org/10.1016/j.ifset.2017.08.012

    Article  CAS  Google Scholar 

  28. Loste J, Lopez-Cuesta JM, Billon L, Garay H, Save M (2018) Transparent polymer nanocomposites: an overview on their synthesis and advanced properties. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2018.10.003

    Article  Google Scholar 

  29. Youssef HF, El-Naggar ME, Fouda FK, Youssef AM (2019b) Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film. J Clean Prod 206:315–325. https://doi.org/10.1016/j.fpsl.2019.100378

    Article  CAS  Google Scholar 

  30. Ibrahim S, El-Naggar ME, Youssef AM, Abdel-Aziz MS (2019) Functionalization of polystyrene nanocomposite with excellent antimicrobial efficiency for food packaging application. J Clust Sci. https://doi.org/10.1007/s10876-019-01748-9

    Article  Google Scholar 

  31. Oleyaei SA, Almasi H, Ghanbarzadeh B, Moayedi AA (2016) Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: thermal, mechanical and barrier properties. Carbohydr Polym 152:253–262. https://doi.org/10.1016/j.carbpol.2016.07.040

    Article  CAS  PubMed  Google Scholar 

  32. Yousefi A, Savadkoohi B, Zahedi Y, Hatami M, Ako K (2019) Fabrication and characterization of hybrid sodium montmorillonite/TiO2 reinforced cross-linked wheat starch-based nanocomposites. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.03.083

    Article  PubMed  Google Scholar 

  33. Kubacka A, Serrano C, Ferrer M, Lünsdorf H, Bielecki P, Cerrada ML, Fernández-García M (2007) High-performance dual-action polymer− TiO2 nanocomposite films via melting processing. Nano Lett 7(8):2529–2534. https://doi.org/10.1021/nl0709569

    Article  CAS  PubMed  Google Scholar 

  34. Ali NA, Noori FTM (2014) Gas barrier properties of biodegradable polymer nanocomposites films. J Chem Mater Res 6(1):44–51.

  35. Ren J, Wang S, Gao C, Chen X, Li W, Peng F (2015) TiO2-containing PVA/xylan composite films with enhanced mechanical properties, high hydrophobicity and UV shielding performance. Cellulose 22(1):593–602. https://doi.org/10.1007/s10570-014-0482-1

    Article  CAS  Google Scholar 

  36. Farhoodi M, Mousavi M, Sotudeh GR, Emam DZ, Oromiehie A (2017) Effect of TiO2 nanoparticles on mechanical and transport properties of polyethylene terephthalate (PET) packages. Iranian J Food Sci Technol 13(60):187–197.

  37. Nakayama N, Hayashi T (2007) Preparation and characterization of poly (L-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92(7):1255–1264. https://doi.org/10.1016/j.polymdegradstab.2007.03.026

    Article  CAS  Google Scholar 

  38. Xiao-E L, Green AN, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol, A 162(2–3):253–259. https://doi.org/10.1016/j.nainr.2003.08.010

    Article  CAS  Google Scholar 

  39. Fathi N, Almasi H, Pirouzifard MK (2019) Sesame protein isolate based bionanocomposite films incorporated with TiO2 nanoparticles: study on morphological, physical and photocatalytic properties. Polym Test 77:105919. https://doi.org/10.1016/j.polymertesting.2019.105919

    Article  CAS  Google Scholar 

  40. El-Naggar ME, Shaheen TI, Zaghloul S, El-Rafie MH, Hebeish A (2016) Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind Eng Chem Res 55(10):2661–2668. https://doi.org/10.1021/acs.iecr.5b04315

    Article  CAS  Google Scholar 

  41. Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2013) Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. J Food Eng 117(1):26–33. https://doi.org/10.1016/j.jfoodeng.2013.01.042

    Article  CAS  Google Scholar 

  42. Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem 59(23):12384–12395. https://doi.org/10.1021/jf201119v

    Article  CAS  PubMed  Google Scholar 

  43. Ding F, Liu J, Zeng S, Xia Y, Wells KM, Nieh MP, Sun L (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3(7):e1701212. https://doi.org/10.1126/sciadv.1701212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohini B, Ishwarya SP, Rajasekharan R, Kumar VA (2020) Ocimum basilicum seed mucilage reinforced with montmorillonite for preparation of bionanocomposite film for food packaging applications. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106465

    Article  Google Scholar 

  45. Rehan M, El-Naggar ME, Mashaly HM, Wilken R (2018) Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym 182:29–41. https://doi.org/10.1016/j.carbpol.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  46. Bodaghi H, Mostofi Y, Oromiehie A, Ghanbarzadeh B, Hagh ZG (2015) Synthesis of clay–TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. J Appl Polym Sci 132(14):41764. https://doi.org/10.1002/app.41764

    Article  CAS  Google Scholar 

  47. Yang CC, Lee YJ (2008) Preparation and characterization of the PVA/MMT composite polymer membrane for DMFC. ECS Trans 13(28):1–20. https://doi.org/10.1149/1.3055402

    Article  Google Scholar 

  48. Marten F (2002) Vinyl alcohol polymers. Encyclopedia of polymer science and technology. Wiley, USA

    Google Scholar 

  49. Han JH, Floros JD (1997) Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J Plast Film Sheeting 13(4):287–298. https://doi.org/10.1177/875608799701300405

    Article  CAS  Google Scholar 

  50. Standard A(2004) Annual book of ASTM standards. American Society for Testing and Materials Annual, Philadelphia, PA, USA 4(04.08).

  51. International A. (2005) ASTM standards: standards test methods and definitions for mechanical testing of steel products (A370–02) ASTM.

  52. Gao HW, Yang RJ, He JY, Yang L (2010) Rheological behaviors of PVA/H2O solutions of high-polymer concentration. J Appl Polym Sci 116(3):1459–1466. https://doi.org/10.1002/app.31677

    Article  CAS  Google Scholar 

  53. El-Shamy AG, Attia W, Abd El-Kader KM (2014) The optical and mechanical properties of PVA-Ag nanocomposite films. J Alloy Compd 590:309–312. https://doi.org/10.1016/j.jallcom.2013.11.203

    Article  CAS  Google Scholar 

  54. Ip KH, Stuart BH, Thomas PS, Ray A (2011) Characterisation of poly (vinyl alcohol)–montmorillonite composites with higher clay contents. Polym Test 30(7):732–736. https://doi.org/10.1016/j.polymertesting.2011.06.004

    Article  CAS  Google Scholar 

  55. Kim SW (2008) Preparation and barrier property of poly (vinyl alcohol)/SiO2 hybrid coating films. Korean J Chem Eng 25(5):1195–1200. https://doi.org/10.1007/s11814-008-0197-9

    Article  CAS  Google Scholar 

  56. Ali MH, Kahder MM, Al-Saad KA (2013) Al-Meer S (2013) Properties of nanoclay PVA composites materials. QScience Connect. https://doi.org/10.5339/connect.2013.1

    Article  Google Scholar 

  57. Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109(6):3804–3810. https://doi.org/10.1002/app.28418

    Article  CAS  Google Scholar 

  58. Zolfi M, Khodaiyan F, Mousavi M, Hashemi M (2014) Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films. Int J Biol Macromol 65:340–345. https://doi.org/10.1016/j.ijbiomac.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  59. Sapalidis AA, Katsaros FK, Kanellopoulos NK (2011) PVA/montmorillonite nanocomposites: development and properties. nanocomposites and polymers with analytical methods, 29–50.

  60. Yun YH, Youn YN, Yoon SD, Lee JU (2012) Preparation and physical properties of starch-based nanocomposite films with the addition of titanium oxide nanoparticles addition of titanium oxide nanoparticles. J Ceram Process Res 13(1): 59–64.

  61. Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A (2017) Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int J Biol Macromol 95:306–313. https://doi.org/10.1016/j.ijbiomac.2016.11.065

    Article  CAS  PubMed  Google Scholar 

  62. Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103(1):76–83. https://doi.org/10.1016/j.jfoodeng.2010.10.001

    Article  CAS  Google Scholar 

  63. Zamanian M, Sadrnia H, Khojastehpour M, Thibault J, Hosseini F (2020) Effect of TiO2 nanoparticles on barrier and mechanical properties of PVA films. J Membr Sci Res. https://doi.org/10.22079/jmsr.2020.112911.1283

    Article  Google Scholar 

  64. de Moraes CT, de Oliveira RA, Alves VD, Bandarra N, Moldão-Martins M, Flores SH (2018) Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids 74:139–150. https://doi.org/10.1016/j.foodhyd.2017.08.007

    Article  CAS  Google Scholar 

  65. Liu S, Cai P, Li X, Chen L, Li L, Li B (2016) Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites. Carbohydr Polym 154:186–193. https://doi.org/10.1016/j.carbpol.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  66. Chen C, Chen Y, Xie J, Xu Z, Tang Z, Yang F, Fu K (2017) Effects of montmorillonite on the properties of cross-linked poly (vinyl alcohol)/boric acid films. Prog Org Coat 112:66–74. https://doi.org/10.1016/j.porgcoat.2017.06.003

    Article  CAS  Google Scholar 

  67. Achachlouei BF, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym 199:415–425. https://doi.org/10.1016/j.carbpol.2018.07.031

    Article  CAS  Google Scholar 

  68. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264. https://doi.org/10.1016/j.ijbiomac.2016.04.078

    Article  CAS  PubMed  Google Scholar 

  69. Venkatesan R, Rajeswari N (2017) TiO2 nanoparticles/poly (butylene adipate-co-terephthalate) bionanocomposite films for packaging applications. Polym Adv Technol 28(12):1699–1706. https://doi.org/10.1002/pat.4042

    Article  CAS  Google Scholar 

  70. Nasiri A, Shariaty-Niasar M, Akbari Z (2012) Synthesis of LDPE/Nano TiO2 nanocomposite for packaging applications. Int J Nanosci Nanotechnol 8(3):165–170

    Google Scholar 

  71. Khalaj MJ, Ahmadi H, Lesankhosh R, Khalaj G (2016) Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends Food Sci Technol 51:41–48. https://doi.org/10.1016/j.tifs.2016.03.007

    Article  CAS  Google Scholar 

  72. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2012) Analysis of gas permeability characteristics of poly (lactic acid)/poly (butylene succinate) nanocomposites. J Nanomater 2012:6. https://doi.org/10.1155/2012/249094

    Article  CAS  Google Scholar 

  73. Mondal D, Mollick MMR, Bhowmick B, Maity D, Bain MK, Rana D, Chattopadhyay D (2013) Effect of poly (vinyl pyrrolidone) on the morphology and physical properties of poly (vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog Nat Sci 23(6):579–587. https://doi.org/10.1016/j.pnsc.2013.11.009

    Article  Google Scholar 

  74. Li Y, Tian H, Jia Q, Niu P, Xiang A, Liu D, Qin Y (2015) Development of polyvinyl alcohol/intercalated MMT composite foams fabricated by melt extrusion. J Appl Polym Sci 132(43):42706. https://doi.org/10.1002/app.42706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Ferdowsi University of Mashhad (Grant No. 44023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sadrnia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamanian, M., Sadrnia, H., Khojastehpour, M. et al. Barrier Properties of PVA/TiO2/MMT Mixed-Matrix Membranes for Food Packaging. J Polym Environ 29, 1396–1411 (2021). https://doi.org/10.1007/s10924-020-01965-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01965-8

Keywords

Navigation