Skip to main content
Log in

Functionalization of Polystyrene Nanocomposite with Excellent Antimicrobial Efficiency for Food Packaging Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Encapsulation or coating of nanoparticles constitutes a serious challenge in nanotechnology science and application by virtue of their very small sizes, high surface energy and high surface area. The present research is solely devoted to create innovative trends without such technology barrier for synthesis and characterization of different nanomaterials. The latter are exemplified by Zinc oxide nanoparticles (ZnO-NPs) and Titanium oxide nanoparticles (TiO2-NPs) using the sol gel method. Also included in these examples are calcium carbonate nanoparticles (CaCO3-NPs) which involve extra modification using stearic acid and; a new method whereby supercritical CO2 is used as an anti-solvent (SAS) for nanoparticle encapsulation. The as prepared PS nanocomposite acquires a surface area ranging from 54 to ≈ 168 m2/g with extension by 180%; in full agreement with the results of particle size. The as fabricated PS nanocomposites are advocated as effective candidates for use as active coating with small size and well-defined shape control along with excellent antimicrobial efficiency. In a more specific sense, this brilliant antimicrobial efficiency is reported against Staphylococcus aureus, Pseudomonas aeruginosa, yeast (Candidia albicans) and fungi (Aspergillus niger). This means that the current nanocomposite can be categorized under active packaging materials and, indeed, should be advocated for such domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Vallet-Regí, M. Colilla, and B. González (2011). Chem. Soc. Rev. 40, 596–607.

    Article  Google Scholar 

  2. B. Lebeau and P. Innocenzi (2011). Chem. Soc. Rev. 40, 886–906.

    Article  CAS  Google Scholar 

  3. A. M. Youssef and S. M. El-Sayed (2018). Carbohydr. Polym. 193, 19–27.

    Article  CAS  Google Scholar 

  4. S. Ibrahim, A. Labeeb, A. F. Mabied, O. Soliman, A. Ward, S. L. Abd-El-Messieh, and A. A. Abdelhakim (2017). Polym. Compos. 38, E147–E156.

    Article  CAS  Google Scholar 

  5. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee (2010). Prog. Polym. Sci. 35, 1350–1375.

    Article  CAS  Google Scholar 

  6. J. Faucheu, C. Gauthier, L. Chazeau, J.-Y. Cavaillé, V. Mellon, and E. B. Lami (2010). Polymer (Guildf). 51, 6–17.

    Article  CAS  Google Scholar 

  7. D. Qi, Z. Cao, and U. Ziener (2014). Adv. Colloid Interface Sci. 211, 47–62.

    Article  CAS  Google Scholar 

  8. V. Fombuena, L. Bernardi, O. Fenollar, T. Boronat, and R. Balart (2014). Mater. Des. 57, 168–174.

    Article  CAS  Google Scholar 

  9. R. Doufnoune, F. Chebira, and N. Haddaoui (2003). Int. J. Polym. Mater. 52, 967–984.

    Article  CAS  Google Scholar 

  10. Z. L. Wang (2004). J. Phys. Condens. Matter. 16, R829.

    Article  CAS  Google Scholar 

  11. A. M. Youssef, A. M. El-Nahrawy, and A. B. A. Hammad (2017). Int. J. Biol. Macromol. 97, 561–567.

    Article  CAS  Google Scholar 

  12. A. Z. Noah, M. A. El Semary, A. M. Youssef, and M. A. El-Safty (2017). Egypt. J. Pet. 26, 33–40.

    Article  Google Scholar 

  13. C. Riggio, V. Raffa, and A. Cuschieri (2010). Micro Nano Lett. 5, 355–360.

    Article  CAS  Google Scholar 

  14. Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, and M. Ohtsu (2011). Nanotechnology 22, 215605.

    Article  CAS  Google Scholar 

  15. A. M. Youssef, H. Abou-Yousef, S. M. El-Sayed, and S. Kamel (2015). Int. J. Biol. Macromol. 76, 25–32.

    Article  CAS  Google Scholar 

  16. O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes (2009). Nano Lett. 9, 731–737.

    Article  CAS  Google Scholar 

  17. S. C. Chan and M. A. Barteau (2005). Langmuir 21, 5588–5595.

    Article  CAS  Google Scholar 

  18. N. Sobana, M. Muruganadham, and M. Swaminathan (2006). J. Mol. Catal. A Chem. 258, 124–132.

    Article  CAS  Google Scholar 

  19. J. C. S. Wu, H.-M. Lin, and C.-L. Lai (2005). Appl. Catal. A Gen. 296, 194–200.

    Article  CAS  Google Scholar 

  20. Y. Liu, X. Wang, F. Yang, and X. Yang (2008). Microporous Mesoporous Mater. 114, 431–439.

    Article  CAS  Google Scholar 

  21. A. M. Youssef, F. M. Malhat, and A. F. A. Abd El-Hakim (2013). Polym. Plast. Technol. Eng. 52, 228–235.

    Article  CAS  Google Scholar 

  22. A. M. El-Nahrawy, A. I. Ali, A. B. A. Hammad, and A. M. Youssef (2016). Int. J. Biol. Macromol. 93, 267–275.

    Article  CAS  Google Scholar 

  23. A. K. Zak, W. H. A. Majid, M. Darroudi, R. Yousefi (2011). Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater. Lett. 65, 70–73.

    Article  CAS  Google Scholar 

  24. M. Rahmani, F. A. Ghasemi, and G. Payganeh (2014). Mech. Ind. 15, 63–67.

    Article  CAS  Google Scholar 

  25. M. E. El-Naggar, A. G. Hassabo, A. L. Mohamed, and T. I. Shaheen (2017). J. Colloid Interface Sci. 498, 413–422.

    Article  CAS  Google Scholar 

  26. J. Hussein, M. El-Banna, T. A. Razik, and M. E. El-Naggar (2018). Int. J. Biol. Macromol. 107, 748–754.

    Article  CAS  Google Scholar 

  27. M. E. El-Naggar, S. I. Othman, A. A. Allam, and O. M. Morsy (2019). Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.037.

    Article  PubMed  Google Scholar 

  28. E. K. Radwan, H. Kafafy, S. T. El-Wakeel, T. I. Shaheen, T. A. Gad-Allah, A. S. El-Kalliny, and M. E. El-Naggar (2018). Cellulose 25, 6645–6660.

    Article  CAS  Google Scholar 

  29. M. E. El-Naggar, E. K. Radwan, S. T. El-Wakeel, H. Kafafy, T. A. Gad-Allah, A. S. El-Kalliny, and T. I. Int (2018). J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.02.126.

    Article  Google Scholar 

  30. S. S. Kumar, P. Venkateswarlu, V. R. Rao, G. N. Rao (2013). Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3, 30. https://doi.org/10.1186/2228-5326-3-30.

    Article  CAS  Google Scholar 

  31. I. Hussain, N. B. Singh, A. Singh, H. Singh, and S. C. Singh (2016). Biotechnol. Lett. 38, 545–560.

    Article  CAS  Google Scholar 

  32. A. Ghadami Jadval Ghadam and M. Idrees (2013). Characterization of CaCO3 nanoparticles synthesized by reverse microemulsion technique in different concentrations of surfactants. Iran. J. Chem. Chem. Eng. 32, 27–35.

    CAS  Google Scholar 

  33. S. Ibrahim and A. Meawad (2018). Constr. Build. Mater. 182, 451–458.

    Article  CAS  Google Scholar 

  34. A. M. Youssef, M. S. Hasanin, M. E. A. El-Aziz, O. M. Darwesh, (2019). Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 5, e01332.

    Article  CAS  Google Scholar 

  35. J. M. Abisharani, S. Devikala, R. D. Kumar, M. Arthanareeswari, and P. Kamaraj (2019). Mater. Today Proc. 14, 302–307.

    Article  CAS  Google Scholar 

  36. S. Delice, M. Isik, and N. M. Gasanly (2019). Mater. Lett. 245, 103–105.

    Article  CAS  Google Scholar 

  37. V. Ramasamy, P. Anand, and G. Suresh (2018). Adv. Powder Technol. 29, 818–834.

    Article  CAS  Google Scholar 

  38. A. M. Youssef and M. S. Abdel-Aziz (2013). Polym. Plast. Technol. Eng. 52, 607–613.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrez E. El-Naggar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S., El-Naggar, M.E., Youssef, A.M. et al. Functionalization of Polystyrene Nanocomposite with Excellent Antimicrobial Efficiency for Food Packaging Application. J Clust Sci 31, 1371–1382 (2020). https://doi.org/10.1007/s10876-019-01748-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01748-9

Keywords

Navigation