Skip to main content
Log in

Analysis of Soil Fungal Community Structure on the Surface of Buried Polyethylene Terephthalate

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigated soil fungal communities that develop on the surface of polyethylene terephthalate (PET) while buried in situ. PET samples prepared with file or alkali were buried in mountain soils for up to 9 months. The composition of fungal communities in native soil and on the surface of buried PET was compared using denaturing gradient gel electrophoresis (DGGE). DGGE and subsequent cluster analyses based on band patterns demonstrated the variability of fungal communities between native soil and PET surfaces. Burial for 3 months reduced diversity indices of soil on the surface of filed PET, yet soil on the surface of alkali-treated PET retained high diversity index. Cluster analyses show that fungal community structure was initially dependent on the difference in microstructure after surface treatment. This dependence later switched to macrostructure-the shape of PET samples. Principal component analysis (PCA) was performed to assess relationships between the surface structure of PET sheets and fungal diversity. Results show that hydrophilicity of PET contributed to differences in structures between alkali-treated PET and other PET samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thompson RC, Swan SH, Moore CJ, Vom Saal FS (2009) Our plastic age. Philos Trans R Soc B Biol Sci 364:1973–1976

    Article  Google Scholar 

  2. Ng W, Minasny B, McBratney A (2020) Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Sci Total Environ 702:134723

    Article  CAS  Google Scholar 

  3. Kint D, Munoz-Guerra S (1999) A review on the potential biodegradability of poly (ethylene terephthalate). Polym Int 48:346–352

    Article  CAS  Google Scholar 

  4. Zhao CS, Huang FL, Xiong WC, Wang YZ (2008) A novel halogen-free flame retardant for glass-fiber-reinforced poly (ethylene terephthalate). Polym Degrad Stab 93:1188–1193

    Article  CAS  Google Scholar 

  5. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  CAS  Google Scholar 

  6. Wei R, Zimmermann W (2017) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 10:1302–1307

    Article  CAS  Google Scholar 

  7. Müller RJ, Schrader H, Profe J, Dresler K, Deckwer W (2005) Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405

    Article  Google Scholar 

  8. Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  9. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562

    Article  CAS  Google Scholar 

  10. Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, Mizushima H, Miyakawa T, Tanokura M (2014) A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98:10053–10064

    Article  CAS  Google Scholar 

  11. Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73:5817–5824

    Article  CAS  Google Scholar 

  12. Kamiya M, Asakawa S, Kimura M (2007) Molecular analysis of fungal communities of biodegradable plastics in two Japanese soils. Soil Sci Plant Nutr 53:568–574

    Article  CAS  Google Scholar 

  13. Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, Watanabe T, Shinozaki Y, Tsushima S, Kitamoto HK (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2:40

    Article  Google Scholar 

  14. Muroi F, Tachibana Y, Kobayashi Y, Sakurai T, Kasuya K (2016) Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym Degrad Stab 129:338–346

    Article  CAS  Google Scholar 

  15. Donelli I, Freddi G, Nierstrasz VA, Taddei P (2010) Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polym Degrad Stab 95:1542–1550

    Article  CAS  Google Scholar 

  16. Hoshino YT, Morimoto S (2008) Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710

    Article  CAS  Google Scholar 

  17. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    Article  CAS  Google Scholar 

  18. Jiang J, Alderisio KA, Singh A, Xiao L (2005) Development of procedures for direct extraction of cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol 71:1135–1141

    Article  CAS  Google Scholar 

  19. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  20. Simpson E (1949) Measurement of diversity. Nature 163:688–688

    Article  Google Scholar 

  21. Mu R, Kleeberg I, Deckwer W (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Article  Google Scholar 

  22. Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  23. Zak JC, Visser S (1996) An appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity. Biodivers Conserv 5:169–183

    Article  Google Scholar 

  24. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  25. Nowak B, Pajak J, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65:757–767

    Article  CAS  Google Scholar 

  26. Lugauskas A, Levinskaite L, Peĉiulyte D (2003) Micromycetes as deterioration agents of polymeric materials. Int Biodeterior Biodegrad 52:233–242

    Article  CAS  Google Scholar 

  27. Pompilio A, Piccolomini R, Picciani C, D’Antonio D, Savini V, Di Bonaventura G (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: The role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47

    Article  CAS  Google Scholar 

  28. Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267

    Article  CAS  Google Scholar 

  29. Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2009) Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeterior Biodegrad 63:273–279

    Article  CAS  Google Scholar 

  30. Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:1–7

    Article  Google Scholar 

  31. Kochkodan V, Tsarenko S, Potapchenko N, Kosinova V, Goncharuk V (2008) Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220:380–385

    Article  CAS  Google Scholar 

  32. Giaouris E, Chapot-Chartier MP, Briandet R (2009) Surface physicochemical analysis of natural lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131:2–9

    Article  CAS  Google Scholar 

  33. Castro HF, Classen T, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  Google Scholar 

  34. Cregger MA, Schadt CW, Mcdowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78:8587–8594

    Article  CAS  Google Scholar 

  35. Zhao Q, Jian S, Nunan N, Maestre FT, Tedersoo L, He J, Wei H, Tan X, Shen W (2017) Altered precipitation seasonality impacts the dominant fungal but rare bacterial taxa in subtropical forest soils. Biol Fertil Soils 53:231–245

    Article  Google Scholar 

  36. Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn MA (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern european waters. FEMS Microbiol Ecol 90:478–492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Center of Innovation Program from the Japan Science and Technology Agency. The authors would like to thank Dr. Hironori Sugiyama (Kanazawa University, Japan) for SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Hirota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPT 954 kb)

Supplementary file2 (PPT 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirota, Y., Naya, M., Tada, M. et al. Analysis of Soil Fungal Community Structure on the Surface of Buried Polyethylene Terephthalate. J Polym Environ 29, 1227–1239 (2021). https://doi.org/10.1007/s10924-020-01960-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01960-z

Keywords

Navigation