Skip to main content

Advertisement

Log in

Starch-Leather Waste Gelatin Films Cross-Linked with Glutaraldehyde

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Gelatin extracted from chromium-tanned leather wastes (CTLW) has a lower molar mass because of the more aggressive extraction process needed to disrupt chromium-collagen bonds when compared to gelatin extracted from the bones, skin, and connective tissues of animals. As a consequence, CTLW gelatin is more hydrophilic, thus it is harder to apply in the production of polymers. To overcome this issue, in this study, films produced with starch, CTLW gelatin, commercial gelatin (as a comparative), and their blends were cross-linked with glutaraldehyde. The cross-linking reduced the crystallinity of the films, impairing the reorganization of gelatin chains into a triple helix structure, which balanced the effect of the higher molecular chain, while not altering the films’ tensile strength. It increased the elongation at break and reduced the solubility and the swelling degree by up to 53% and 69%, respectively. These results stand as a great advance for the practical use of starch-CTLW gelatin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arvanitoyannis I et al (1997) Edible films made from gelatin, soluble starch and polyols, Part 3. Food Chem 60:593–604

    Article  CAS  Google Scholar 

  2. Arvanitoyannis I, Nakayama A, Aiba S (1998) Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr Polym 36:105–119

    Article  CAS  Google Scholar 

  3. Garcia VAS et al (2017) Gelatin and pregelatinized starch orally disintegrating films: properties and stability of vitamin C. J Appl Polym Sci 134:1–19

    Article  CAS  Google Scholar 

  4. Al-Hassan AA, Norziah MH (2017) Effect of transglutaminase induced crosslinking on the properties of starch/gelatin films. Food Packag Shelf Life 13:15–19

    Article  Google Scholar 

  5. Moreno O et al (2017) Active starch-gelatin films for shelf-life extension of marinated salmon. LWT—Food Sci Technol 84:189–195

    Article  CAS  Google Scholar 

  6. Podshivalov A et al (2017) Gelatin/potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydr Polym 157:1162–1172

    Article  CAS  PubMed  Google Scholar 

  7. Wang W et al (2017) Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int J Biol Macromol 94:258–265

    Article  CAS  PubMed  Google Scholar 

  8. Wang K et al (2017) Mechanical and barrier properties of maize starch-gelatin composite films: effects of amylose content. J Sci Food Agric 97:3613–3622

    Article  CAS  PubMed  Google Scholar 

  9. Scopel BS et al (2017) Cornstarch-gelatin films: commercial gelatin versus chromed leather waste gelatin and evaluation of drying conditions. J Polym Environ 26:1998–2006

    Article  CAS  Google Scholar 

  10. Garcia VAS et al (2018) Gelatin/starch orally disintegrating films as a promising system for vitamin C delivery. Food Hydrocoll 79:127–135

    Article  CAS  Google Scholar 

  11. Moreno O et al (2018) Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. LWT 97:483–490

    Article  CAS  Google Scholar 

  12. Scopel BS et al (2019) Mechanical and water interaction properties of polymeric films produced with starch and gelatin extracted from leather waste as affected by different composition. JALCA 114:1–9

    CAS  Google Scholar 

  13. Malherbi NM et al (2019) Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag Shelf Life 19:140–146

    Article  Google Scholar 

  14. Shi C, Tao F, Cui Y (2018) New starch ester/gelatin based films: developed and physicochemical characterization. Int J Biol Macromol 109:863–871

    Article  CAS  PubMed  Google Scholar 

  15. Marvizadeh MM et al (2017) Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. Int J Biol Macromol 99:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Afshar S, Baniasadi H (2018) Investigation the effect of graphene oxide and gelatin/starch weight ratio on the properties of starch/gelatin/GO nanocomposite films: the RSM study. Int J Biol Macromol 109:1019–1028

    Article  CAS  PubMed  Google Scholar 

  17. Catalina M et al (2011) Influence of crosslinkers and crosslinking method on the properties of gelatin films extracted from leather solid waste. J Appl Polym Sci 119:2105–2111

    Article  CAS  Google Scholar 

  18. Ocak B (2018) Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan. Environ Sci Pollut Res Int 25:4643–4655

    Article  CAS  PubMed  Google Scholar 

  19. Dang X, Shan Z, Chen H (2018) Biodegradable films based on gelatin extracted from chrome leather scrap. Int J Biol Macromol 107:1023–1029

    Article  CAS  PubMed  Google Scholar 

  20. Langmaier F et al (2008) Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag 28:549–556

    Article  CAS  PubMed  Google Scholar 

  21. Aung SPS et al (2018) Environment-friendly biopolymers for food packaging: starch, protein, and poly-lactic acid (PLA). In: Bio-based materials for food packaging: green and sustainable advanced packaging materials. Springer, Singapore

    Chapter  Google Scholar 

  22. Zhong QP, Xia WS (2008) Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technol Biotechnol 46:262–269

    CAS  Google Scholar 

  23. Fakhouri FM et al (2009) Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Starch - Stärke 61:528–536

    Article  CAS  Google Scholar 

  24. Acosta S et al (2015) Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloid 49:135–143

    Article  CAS  Google Scholar 

  25. Acosta S et al (2016) Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll 61:233–240

    Article  CAS  Google Scholar 

  26. Wang Y et al (2013) Effect of the carbonyl content on the properties of composite films based on oxidized starch and gelatin. J Appl Polym Sci 130:3809–3815

    Article  CAS  Google Scholar 

  27. Kolomazník K et al (1999) Experience in industrial practice of enzymatic dechromation of chrome shavings. JALCA 94:55–63

    Google Scholar 

  28. Gaidau C et al (2009) Additives and advanced biomaterials obtained from leather industry by-products. Rev Chim 60:501–507

    CAS  Google Scholar 

  29. Mokrejs P et al (2007) Properties of collagen hydrolyzates obtained from leather shavings. Asian J Chem 19:1207–1216

    CAS  Google Scholar 

  30. Dang X et al (2019) Recovery and utilization of collagen protein powder extracted from chromium leather scrap waste. Environ Sci Pollut Res Int 26:7277–7283

    Article  CAS  PubMed  Google Scholar 

  31. Martucci JF, Ruseckaite RA (2009) Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions. Polym Degrad Stab 94:1307–1313

    Article  CAS  Google Scholar 

  32. Martucci JF, Ruseckaite RA (2009) Tensile properties, barrier properties, and biodegradation in soil of compression-molded gelatin-dialdehyde starch films. J Appl Polym Sci 112:2166–2178

    Article  CAS  Google Scholar 

  33. Biscarat J et al (2015) Effect of chemical cross-linking on gelatin membrane solubility with a non-toxic and non-volatile agent: terephthalaldehyde. Int J Biol Macromol 74:5–11

    Article  CAS  PubMed  Google Scholar 

  34. Ramshaw JA (2016) Biomedical applications of collagens. J Biomed Mater Res B 104:665–675

    Article  CAS  Google Scholar 

  35. Silvipriya KS et al (2015) Collagen: animal sources and biomedical application. J Appl Pharm Sci 5:123–127

    Article  CAS  Google Scholar 

  36. Scopel BS et al (2018) Steam explosion in alkaline medium for gelatine extraction from chromium-tanned leather wastes: time reduction and process optimization. Environ Technol 38:367–373

    Google Scholar 

  37. Farris S et al (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58:998–1003

    Article  CAS  PubMed  Google Scholar 

  38. Naguleswaran S et al (2013) The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Res Int 51:771–782

    Article  CAS  Google Scholar 

  39. Weber FH, Collares-Queiroz FP, Chang YK (2009) Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose. Ciênc Tecnol Aliment 29:748–753

    Article  Google Scholar 

  40. Fakhouri FM et al (2015) Edible films and coatings based on starch/gelatin: film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol Technol 109:57–64

    Article  CAS  Google Scholar 

  41. Gómez-Estaca J et al (2009) Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: a comparative study. J Food Eng 90:480–486

    Article  CAS  Google Scholar 

  42. Muyonga JH, Cole CGB, Duodu KG (2004) Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocoll 18:581–592

    Article  CAS  Google Scholar 

  43. Akcelrud L (2007) Fundamentos da Ciência dos Polímeros. Manole, Barueri

    Google Scholar 

  44. Gennadios A (2002) Protein-based films and coatings. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Englert C et al (2007) Bonding of articular cartilage using a combination of biochemical degradation and surface cross-linking. Arthritis Res Ther 9:R47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kuk M, Bland J (2002) Effect of pH on a gossypol complex with phospholipids: Gossypol-PE. JAOCS 79:1045–1048

    Article  CAS  Google Scholar 

  47. Qiao C et al (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50

    Article  CAS  PubMed  Google Scholar 

  48. Dammak I, Lourenço RV, Sobral PJA (2019) Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. J Food Eng 240:9–20

    Article  CAS  Google Scholar 

  49. Soliman EA, Furuta M (2014) Influence of phase behavior and miscibility on mechanical, thermal and micro-structure of soluble starch-gelatin thermoplastic biodegradable blend films. Food Nutr Sci 05:1040–1055

    Google Scholar 

  50. Chaibi S et al (2015) The role of crosslinking on the physical properties of gelatin based films. Colloid Polym Sci 293:2741–2752

    Article  CAS  Google Scholar 

  51. Covington AD (2015) Tanning chemistry: the science of leather. Royal Society of Chemistry, Cambridge

    Google Scholar 

  52. Rindlav-Westling A et al (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36:217–224

    Article  CAS  Google Scholar 

  53. Romero-Bastida CA et al (2015) Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite. Carbohydr Polym 127:195–201

    Article  CAS  PubMed  Google Scholar 

  54. Souza de Miranda C et al (2015) Effect of the glycerol and lignin extracted from Piassava fiber in cassava and corn starch films. Mater Res 18:260–264

    Article  CAS  Google Scholar 

  55. Al-Hassan AA, Norziah MH (2012) Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll 26:108–117

    Article  CAS  Google Scholar 

  56. CROW (2015) Polymer properties database. In Polymer database. https://polymerdatabase.com/polymer%20physics/Stress-Strain%20Behavior.html Accessed 24 Feb

  57. Jiang X et al (2016) Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. Int J Biol Macromol 82:223–230

    Article  CAS  PubMed  Google Scholar 

  58. Etxabide A et al (2017) Effect of pH and lactose on cross-linking extension and structure of fish gelatin film. React Funct Polym 117:140–146

    Article  CAS  Google Scholar 

  59. Selmin F et al (2015) Aminoacids as non-traditional plasticizers of maltodextrins fast-dissolving film. Carbohydr Polym 115:613–616

    Article  CAS  PubMed  Google Scholar 

  60. Wolf BA (1985) Solubility of polymers. Pure Appl Chem 57:323–336

    Article  CAS  Google Scholar 

  61. Canevarolo SV Jr (2006) Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. Artliber, São Paulo

    Google Scholar 

  62. Tager A (1978) Physical chemistry of polymers. Mir, Moscow

    Google Scholar 

Download references

Acknowledgements

The authors thank to Caxias do Sul University and Federal University of Rio Grande do Sul for their financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by the National Counsel of Technological and Scientific Development (CNPq – Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Santinon Scopel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scopel, B.S., Pretto, G.L., Corrêa, J.I.P. et al. Starch-Leather Waste Gelatin Films Cross-Linked with Glutaraldehyde. J Polym Environ 28, 1974–1984 (2020). https://doi.org/10.1007/s10924-020-01736-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01736-5

Keywords

Navigation