Skip to main content
Log in

Synthesis of Melanin Mediated Silver Nanoparticles from Aeromonas sp. SNS Using Response Surface Methodology: Characterization with the Biomedical Applications and Photocatalytic Degradation of Brilliant Green

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Melanin is ubiquitous in nature and has wide applications in cosmetics, agriculture, and medicine. The synthesized melanin from bacterium Aeromonas sp. SNS was further used as capping and reducing agents for synthesis of silver nanoparticles (AgNPs). The influence of the experimental parameters (AgNO3, melanin concentrations, and temperature) and their interactions on the nanoparticle synthesis was optimized using response surface methodology (RSM). The Central Composite Design (CCD) with three independent variables was optimized for the effective synthesis of AgNPs. The optimized synthesis of AgNPs was achieved at the shortest time of 14.12 h in the presence of 2.62 mM AgNO3, and 32.30 µg ml−1 melanin concentration at 54.86 °C temperature. The synthesized AgNPs were characterized by means of UV–visible spectroscopy, FTIR, SEM, TEM, and PSD respectively. The AgNPs exhibited excellent antimicrobial activity against human and food-related pathogens. These AgNPs also have strong antioxidant potential which was estimated by DPPH, DMPD and FRAP radical scavenging assays. The 92.62% photocatalytic degradation of 250 PPM brilliant green was observed in 120 min. The present finding accelerates the melanin associated AgNPs could be used in the cosmetic and pharmaceutical industries as well as in textile industries as they have superior antimicrobial, antioxidant, and photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Surwase SN, Jadhav S, Phugare S, Jadhav JP (2012) 3 Biotech 3:187–194

    Article  Google Scholar 

  2. Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D et al (2010) Nature 463:1075–1078

    Article  CAS  Google Scholar 

  3. Wogelius RA, Manning PL, Barden HE, Edwards NP, Webb SM, Sellers WI et al (2011) Science 333:1622–1626

    Article  CAS  Google Scholar 

  4. Lindgren J, Uvdal P, Sjövall P, Nilsson DE, Engdahl A, Schultz BP, Thiel V (2012) Nat Commun 3:824

    Article  Google Scholar 

  5. Hung YC, Sava V, Hong MY, Huang GS (2004) Life Sci 74:2037–2047

    Article  CAS  Google Scholar 

  6. Vasanthabharathi V, Lakshminarayanan R, Jayalakshmi S (2011) Afr J Biotechnol 10:11224–11234

    Article  CAS  Google Scholar 

  7. Sivaperumal P, Kamala K, Rajaram R (2015) Nat Product Res 29:2117–2121

    Article  CAS  Google Scholar 

  8. Rózanowska M, Sarna T, Land EJ, Truscott TG (1999) Free Radic Biol Med 26:518–525

    Article  Google Scholar 

  9. Hung YC, Sava VM, Makan SY, Chen THJ, Hong MY, Huang GS (2002) Food Chem 78:233–240

    Article  CAS  Google Scholar 

  10. Roy S, Rhim JW (2019) Colloids Surf B 176:317–324

    Article  CAS  Google Scholar 

  11. Raman NM, Shah PH, Mohan M, Ramasamy S (2015) AMB Exp 5:72

    Article  Google Scholar 

  12. Zhang M, Xiao G, Thring RW, Chen W, Zhou H, Yang H (2015) Appl Biochem Biotechnol 176:253–266

    Article  CAS  Google Scholar 

  13. Zou Y, Hou X (2016) Food Sci Technol Camp 37:153–157

    Article  Google Scholar 

  14. Sun S, Zhang X, Sun S, Zhang L, Shan S, Zhu H (2016) Food Chem 190:801–807

    Article  CAS  Google Scholar 

  15. El-Batal AI, Al Tamie MS (2016) Der Pharm Lett 8:315–333

    CAS  Google Scholar 

  16. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Int J Biol Macromol 58:263–274

    Article  CAS  Google Scholar 

  17. Tarangini K, Mishra S (2014) Biotechnol Rep 4:139–146

    Article  Google Scholar 

  18. Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) PLoS ONE 3:150. https://doi.org/10.1371/journal.pone.0125428

    Article  CAS  Google Scholar 

  19. El-Naggar NEA, El-Ewasy SM (2017) Sci Rep 7:42129. https://doi.org/10.1038/srep42129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M (2017) J Clust Sci 28(3):1083–1112

    Article  CAS  Google Scholar 

  21. Jiang H, Liu NN, Liu GL, Chi Z, Wang JM, Zhang LL, Chi ZM (2016) Extremophiles 20:567–577

    Article  CAS  Google Scholar 

  22. Saleh H, Abdelrazak A, Elsayed AE, Osman Y (2018) J Biol Life Sci 9:24–38

    Article  Google Scholar 

  23. Alarfaj NA, El-Tohamy MF (2016) Luminescence 31:1194–1200

    Article  CAS  Google Scholar 

  24. Alim S, Vejayan J, Yusoff MM, Kafi AK (2018) Biosens Bioelectron 3:150. https://doi.org/10.1016/j.bios.2018.08.051

    Article  CAS  Google Scholar 

  25. Płaza G, Chojniak J, Ibrahim MB (2014) Int J Mol Sci 15:13720–13737

    Article  Google Scholar 

  26. Kiran GS, Dhasayan A, Lipton AN, Selvin J, Arasu MV, Al-Dhabi NA (2014) J Nanobiotechnol 12(1):18

    Article  Google Scholar 

  27. Apte M, Girme G, Bankar A, RaviKumar A, Zinjarde S (2013) J Nanobiotechnol 11:1–9

    Article  Google Scholar 

  28. Liopo A, Su R, Oraevsky AA (2015) Photoacoustics 3:35–43

    Article  Google Scholar 

  29. Monira MR, EL-Gebaly RH, Abou-Shady H, Amin DG (2015) Mol Cell Biochem 399:59–69

    Article  Google Scholar 

  30. Kim DJ, Ju KY, Lee JK (2012) Bull Korean Chem Soc 33(11):3788–3792

    Article  CAS  Google Scholar 

  31. Cos P, Vlietinck A, Berghe D, Maes L (2006) J Ethnopharm 106:290–302

    Article  CAS  Google Scholar 

  32. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  33. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) J Food Compos Anal 19:669–675

    Article  CAS  Google Scholar 

  34. Fogliano V, Verde V, Randazzo G, Ritieni A (1999) J Agric Food Chem 47:1035–1040

    Article  CAS  Google Scholar 

  35. Benzie IF, Strain JJ (1996) Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  36. Patil S, Surwase S, Jadhav S, Jadhav J (2013) Biochem Eng J 74:36–45

    Article  CAS  Google Scholar 

  37. Naoya M, Tomohiro I, Watano S (2015) Nanomater Nanotechnol 5:13

    Article  Google Scholar 

  38. Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) AMB Express 3:32

    Article  Google Scholar 

  39. Apte M, Girme G, Nair R, Bankar A, Kumar AR, Zinjarde S (2013) Mater Lett 95:149–152

    Article  CAS  Google Scholar 

  40. Roy S, Rhim JW (2019) J Nanomater. https://doi.org/10.1155/2019/2840517

    Article  Google Scholar 

  41. Patil S, Sistla S, Bapat V, Jadhav J (2018) Appl Biochem Microbiol 54:163–172

    Article  CAS  Google Scholar 

  42. Babu G, Gunasekaran P (2009) Colloids Surf B 74:191–195

    Article  CAS  Google Scholar 

  43. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V, Nevena T, Zboril R (2006) J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  44. Bursal E, Köksal E (2011) Food Res Int 44:2217–2221

    Article  CAS  Google Scholar 

  45. Huang S, Pan Y, Gan D, Ouyang X, Tang S, Ekunwe SIN, Wang H (2011) Med Chem Res 20:475–481

    Article  CAS  Google Scholar 

  46. Tu YG, Sun YZ, Tian YG, Xie MY, Chen J (2009) Food Chem 114:1345–1350

    Article  CAS  Google Scholar 

  47. El-Naggar NEA, El-Ewasy SM (2017) Sci Rep 7:42129. https://doi.org/10.1038/srep42129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zerrad A, Anissi J, Ghanam J, Sendide K, Mohammed EH (2014) J Biotechnol Lett 5:87–94

    Google Scholar 

  49. Kaur S, Sharma S, Umar A, Singh S, Mehta SK, Kansal SK (2017) Superlattices Microstruct 103:365–375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Jyoti P. Jadhav and all authors wish to thank Interdisciplinary Programmed for Life Sciences sponsored by Department of Biotechnology, Government of India, under DBT-IPLS program (IPLS-Reference No: BT/PR4572/INF/22/147/2012) for providing instrument facility. Miss Swati T. Gurme wishes to thank to UGC, New Delhi, India, for providing Senior Research Fellowship under the scheme (UGC BSR-SAP). Mr. Chetan B. Aware wish to thanks to IPLS program for providing Senior Research Fellowship. Mr. Chetan S. Chavan thanks to DBT, Government of India for providing doctoral research fellowship. The authors would like to thank Prof. Sangeeta Kale for giving access to lab facilities in DIAT, Pune-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti P. Jadhav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10924_2019_1529_MOESM1_ESM.docx

Supplementary material 1 Fig. S1 Pictorial descriptions of zone of inhibition for (a) Bacillus subtilius, (b) Bacillus cerus, (c) E. coli, (d) Pseudomonas velgaris, (e) Salmonella typhimurium, (f) Staphylococcus aureus and (g) Aspergillus niger (DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurme, S.T., Aware, C.B., Surwase, S.N. et al. Synthesis of Melanin Mediated Silver Nanoparticles from Aeromonas sp. SNS Using Response Surface Methodology: Characterization with the Biomedical Applications and Photocatalytic Degradation of Brilliant Green. J Polym Environ 27, 2428–2438 (2019). https://doi.org/10.1007/s10924-019-01529-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01529-5

Keywords

Navigation