Skip to main content
Log in

Production and Characterization of Melanin by Submerged Culture of Culinary and Medicinal Fungi Auricularia auricula

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Natural melanin is of great potential value and application in the fields of pharmacology, cosmetics, and functional foods. In the present study, statistically designed experiments were conducted for the optimization of the media to enhance the production of melanin by submerged culture of Auricularia auricula. Glucose, tyrosine, peptone, and CaCO3 were found to have significant effects (P < 0.015) on melanin biosynthesis by a Plackett–Burman experimental design and subsequently optimized using response surface methodology. Optimal media were obtained at the following concentrations: glucose, 0.90 g/L; tyrosine, 6.68 g/L; peptone, 6.99 g/L; and CaCO3, 6.75 g/L. The validity of the optimum media was verified in separate experiments in which the melanin yield of 1008.08 mg/L was obtained under optimum conditions, compared with 306.52 mg/L at other conditions, i.e., a 3.29-fold increase. Furthermore, the important physical and chemical properties of A. auricula melanin were determined. The findings from the present study indicate that large-scale production of natural melanin by submerged culture of A. auricular could be a useful approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong, C., & Yao, Y. (2012). Isolation, characterization of melanin derived from Ophiocordyceps sinensis, an entomogenous fungus endemic to the Tibetan Plateau. Journal of Bioscience and Bioengineering, 113, 474–479.

    Article  CAS  Google Scholar 

  2. Huang, S., Pan, Y., Gan, D., Ouyang, X., Tang, S., Ekunwe, S. I. N., & Wang, H. (2011). Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research, 20, 475–481.

    Article  CAS  Google Scholar 

  3. Shcherba, V. V., Babitskaya, V. G., Kurchenko, V. P., Ikonnikova, N. V., & Kukulyanskaya, T. A. (2000). Antioxidant properties of fungal melanin pigments. Applied Biochemistry and Microbiology, 36, 491–495.

    Article  Google Scholar 

  4. Tu, Y., Sun, Y., Tian, Y., Xie, M., & Chen, J. (2009). Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chemistry, 114, 1345–1350.

    Article  CAS  Google Scholar 

  5. Sava, V. M., Galkin, B. N., Hong, M. Y., Yang, P. C., & Huang, G. S. (2001). A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Research International, 34, 337–343.

    Article  CAS  Google Scholar 

  6. El-Obeid, A., Al-Harbi, S., Al-Jomah, N., & Hassib, A. (2006). Herbal melanin modulates tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production. Phytomedicine, 13, 324–333.

    Article  CAS  Google Scholar 

  7. Hung, Y. C., Sava, V. M., Blagodarsky, V. A., Hong, M. Y., & Huang, G. S. (2003). Protection of tea melanin on hydrazine-induced liver injury. Life Science, 72, 1061–1071.

    Article  CAS  Google Scholar 

  8. Li, B., Li, W., Chen, X., Jiang, M., & Dong, M. (2012). In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Annals of Microbiology, 62, 1523–1530.

    Article  CAS  Google Scholar 

  9. Guo, X., Chen, S., Hu, Y., Li, G., Liao, N., Ye, X., Liu, D., & Xue, C. Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity. Journal of Food Science and Technology. doi:10.1007/s13197-013-0937-7.

  10. Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., & Chen, W. Y. (2012). Characterization of antioxidant polysaccharides from Auricularia auricula using microwave-assisted extraction. Carbohydrate Polymer, 89, 694–700.

    Article  CAS  Google Scholar 

  11. Wu, J., Ding, Z. Y., & Zhang, K. C. (2006). Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture. Enzyme Microbial and Technology, 39, 743–749.

    Article  CAS  Google Scholar 

  12. Jiao, Y. C., Chen, Q. H., Zhou, J. S., Zhang, H. F., & Chen, H. Y. (2008). Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation. LWT - Food Science and Technology, 41, 1694–1700.

    Article  CAS  Google Scholar 

  13. Gao, H., & Gu, W. Y. (2007). Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process. Biochemical Engineering Journal, 33, 202–210.

    Article  CAS  Google Scholar 

  14. Jeong, S. C., Cho, S. P., Yang, B. K., Gu, Y. A., Jang, J. H., Huh, T. L., & Song, C. H. (2004). Production of an anti-complement exo-polymer produced by Auricularia auricula-judae in submerged culture. Biotechnology Letters, 26, 923–927.

    Article  CAS  Google Scholar 

  15. Zou, Y., Xie, C., Fan, G., Gu, Z., & Han, Y. (2010). Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innovative Food Science and Emerging Technologies, 11, 611–615.

    Article  CAS  Google Scholar 

  16. Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. International Journal of Biological Macromolecules, 58, 263–274.

    Article  CAS  Google Scholar 

  17. Surwase, S. N., Jadhav, S. B., Phugare, S. S., & Jadhav, J. P. (2013). Optimization of melanin production by Brevundimonas sp. SGJ using response surface methodology. 3 Biotechnology, 3, 187–194.

    Google Scholar 

  18. Jalmi, P., Bodke, P., Wahidullah, S., & Raghukumar, S. (2012). The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World Journal of Microbiology and Biotechnology, 28, 505–512.

    Article  CAS  Google Scholar 

  19. Zhan, F., He, Y., Zu, Y., Li, T., & Zhao, Z. (2011). Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology, 27, 2483–2489.

    Article  CAS  Google Scholar 

  20. Suryanarayanan, T. S., Ravishankar, J. P., Venkatesan, G., & Murali, T. S. (2004). Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycology Research, 108, 974–978.

    Article  CAS  Google Scholar 

  21. Selvakumar, P., Rajasekar, S., Periasamy, K., & Raaman, N. (2008). Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World Journal of Microbiology and Biotechnology, 24, 2125–2131.

    Article  CAS  Google Scholar 

  22. Ellis, D. H., & Griffiths, D. A. (1974). The location and analysis of melanins in the cell walls of some soil fungi. Canadian Journal of Microbiology, 20, 1379–1386.

    Article  CAS  Google Scholar 

  23. Singh, A., & Bishnoi, N. R. (2012). Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, 37, 334–341.

    Article  CAS  Google Scholar 

  24. Pereira, F. B., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 101, 7856–7863.

    Article  CAS  Google Scholar 

  25. Feng, Y. L., Li, W. Q., Wu, X. Q., Cheng, J. W., & Ma, S. Y. (2010). Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49, 104–112.

    Article  CAS  Google Scholar 

  26. Liu, J., Miao, S., Wen, X., & Sun, Y. (2009). Optimization of polysaccharides (ABP) extraction from the fruiting bodies of Agaricus blazei Murill using response surface methodology (RSM). Carbohydrate Polymer, 78, 704–709.

    Article  CAS  Google Scholar 

  27. Wang, Y. X., & Lu, Z. X. (2004). Statistical optimization of media for extracellular polysaccharide by Pholiota squarrosa (Pers. ex Fr.) Quel. AS 5.245 under submerged cultivation. Biochemical Engineering Journal, 20, 39–47.

    Article  CAS  Google Scholar 

  28. Kennedy, M., & Krouse, D. (1999). Strategies for improving fermentation medium performance: a review. Journal of Industrial Microbiology and Biotechnology, 23, 456–475.

    Article  CAS  Google Scholar 

  29. Xie, D. T., Wang, Y. Q., Kang, Y., Hu, Q. F., Su, N. Y., Huang, J. M., Che, C. T., & Guo, J. X. (2014). Microwave-assisted extraction of bioactive alkaloids from Stephania sinica. Separation and Purification Technology, 130, 173–181.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Department of Science and Technology (Project No. 2015C32028), P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Yang.

Additional information

Hailong Yang holds a PhD degree, Wenzhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xiao, G., Thring, R.W. et al. Production and Characterization of Melanin by Submerged Culture of Culinary and Medicinal Fungi Auricularia auricula . Appl Biochem Biotechnol 176, 253–266 (2015). https://doi.org/10.1007/s12010-015-1571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1571-9

Keywords

Navigation