Skip to main content

Advertisement

Log in

Preparation, Characterization, and Antioxidant Activity of β-Carotene Impregnated Polyurethane Based on Epoxidized Soybean Oil and Malic Acid

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new polyol was synthesized based on epoxidized soybean oil (ESO) and malic acid (MA) for the formulation of a bio-based polyurethane. The synthesized polyol was characterized by Fourier transform-infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry. Polyurethanes were formed by reacting the synthesized ESO-MA polyol with 1,6-hexamethylene diisocyanate at different isocyanate/hydroxyl ratios. The tensile and thermal properties of the prepared polyurethanes were analyzed by differential scanning calorimetry, thermogravimetric analysis, and universal testing machine. The polyurethanes exhibited a tensile strength of 1.34–5.56 MPa, an elongation at break of 20–41%, and a glass transition temperature of − 2.7 to 0.6 °C. In addition, β-carotene, a natural antioxidant, was impregnated on the polyurethane surface and its effect on the tensile and thermal properties of polyurethane was investigated. An increase in tensile strength and a reduction in elongation at break were observed in these β-carotene impregnated polyurethane films. They also showed up to 61% radical scavenging activity against 2,2-diphenyl-1-picryhydrazyl radical in methanol. Moreover, these films retained radical scavenging activity for more than 50 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications—a review. RSC Adv 6:114453–114482

    Article  CAS  Google Scholar 

  2. Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethanefoams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227–233

    Article  CAS  PubMed  Google Scholar 

  3. Kong X, Yue J, Narine SS (2007) Physical properties of canola oil based polyurethane networks. Biomacromolecules 8:3584–3589

    Article  CAS  PubMed  Google Scholar 

  4. Petrović ZS, Yang L, Zlatanic A, Zhang W, Javni I (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci 105:2717–2727

    Article  CAS  Google Scholar 

  5. Zhang C, Li Y, Chen R, Kessler MR (2014) Polyurethanes from solvent-free vegetable oil-based polyols. ACS Sustain Chem Eng 2:2465–2476

    Article  CAS  Google Scholar 

  6. Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. Chemsuschem 4:703–717

    Article  CAS  PubMed  Google Scholar 

  7. Pechar TW, Sohn S, Wilkes GL, Ghosh S, Frazier CE, Fornof A, Long TE (2006) Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. J Appl Polym Sci 101:1432–1443

    Article  CAS  Google Scholar 

  8. Feng Y, Liang H, Ziming Y, Teng Y, Ying L, Puwang L, Yang Z, Zhang C (2017) A solvent-free and scalable method to prepare soybean-oil-based polyols by thiol–ene photo-click reaction and biobased polyurethanes therefrom. ACS Sustain Chem Eng 5:7365–7373

    Article  CAS  Google Scholar 

  9. Tu Y-C, Kiatsimkul P, Suppes G, Hsieh FH (2007) Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J Appl Polym Sci 105:453–459

    Article  CAS  Google Scholar 

  10. Ji D, Fang Z, He W, Zhang K, Luo Z, Wang T, Guo K (2015) Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustain Chem Eng 3:1197–1204

    Article  CAS  Google Scholar 

  11. Sienkiewicz AM, Czub P (2016) The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol A. Ind Crops Prod 83:755–773

    Article  CAS  Google Scholar 

  12. Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B (2011) Synthesis of biobased polyols by thiol–ene coupling from vegetable oils. Macromolecules 44:2489–2500

    Article  CAS  Google Scholar 

  13. Caillol S, Desroches M, Boutevin G, Loubat C, Auvergne R, Boutevin B (2012) Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur J Lipid Sci Technol 114:1447–1459

    Article  CAS  Google Scholar 

  14. Datta J, Głowińska E (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Ind Crops Prod 61:84–91

    Article  CAS  Google Scholar 

  15. Dai H, Yang L, Lin B, Wang C, Shi G (2009) Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. J Am Oil Chem Soc 86:261–267

    Article  CAS  Google Scholar 

  16. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. J Am Oil Chem Soc 84:55–63

    Article  CAS  Google Scholar 

  17. Lu Y, Larock RC (2008) Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules 9:3332–3340

    Article  CAS  PubMed  Google Scholar 

  18. Lubguban AA, Tu Y-C, Lozada ZR, Hsieh F-H, Suppes GJ (2009) Noncatalytic polymerization of ethylene glycol and epoxy molecules for rigid polyurethane foam applications. J Appl Polym Sci 112:2185–2194

    Article  CAS  Google Scholar 

  19. Dahlke B, Helbert S, Paetow M, Zech W-H (1995) Polyhydroxy fatty acids and their derivatives from plant oils. J Am Oil Chem Soc 72:349–353

    Article  CAS  Google Scholar 

  20. Li Z, Zhang R, Moon K-S, Liu Y, Hansen K, Le T, Wong CP (2013) Highly conductive, flexible, polyurethane-based adhesives for flexible and printed electronics. Adv Funct Mater 23:1459–1465

    Article  CAS  Google Scholar 

  21. Li Y, Sun XS (2014) Di-hydroxylated soybean oil polyols with varied hydroxyl values and their influence on UV-curable pressure-sensitive adhesives. J Am Oil Chem Soc 91:1425–1432

    Article  CAS  Google Scholar 

  22. Guo A, Cho Y, Petrović ZS (2000) Structure and properties of halogenated and nonhalogenated soy-based polyols. J Polym Sci Pol Chem 38:3900–3910

    Article  CAS  Google Scholar 

  23. Pelletier H, Belgacem N, Gandini A (2006) Acrylated vegetable oils as photocrosslinkable materials. J Appl Polym Sci 99:3218–3221

    Article  CAS  Google Scholar 

  24. Doll KM, Sharma BK, Erhan SZ (2007) Synthesis of branched methyl hydroxy stearates including an ester from bio-based levulinic acid. Ind Eng Chem Res 46:3513–3519

    Article  CAS  Google Scholar 

  25. Datta J, Kosiorek P, Włoch M (2017) Synthesis, structure and properties of poly(ether-urethane)s synthesized using a tri-functional oxypropylated glycerol as a polyol. J Therm Anal Calorim 128:155–167

    Article  CAS  Google Scholar 

  26. Miao S, Zhang S, Su Z, Wang P (2013) Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J Appl Polym Sci 127:1929–1936

    Article  CAS  Google Scholar 

  27. Miao S, Zhang S, Su Z, Wang P (2010) A novel vegetable oil–lactate hybrid monomer for synthesis of high-T g polyurethanes. J Polym Sci Pol Chem 48:243–250

    Article  CAS  Google Scholar 

  28. Li Y, Sun XS (2015) Polyols from epoxidized soybean oil and alpha hydroxyl acids and their adhesion properties from UV polymerization. Int J Adhes Adhes 63:1–8

    Article  CAS  Google Scholar 

  29. Keykhosravi K, Javan JA, Parsaiemehr M (2016) Effect of malic acid on bioactive components and antioxidant properties of sliced button mushroom (Agaricus bisporus) during storage. Iran J Vet Med 9:287–294

    Google Scholar 

  30. Assis RQ, Pagno CH, Costa TMH, Flores SH, Rios AO (2018) Synthesis of biodegradable films based on cassava starch containing free and nanoencapsulated β-carotene. Packag Technol Sci 31:157–166

    Article  CAS  Google Scholar 

  31. Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloid 27:220–227

    Article  CAS  Google Scholar 

  32. Kim S, Baek S-K, Go E, Song KB (2018) Application of adzuki bean starch in antioxidant films containing cocoa nibs extract. Polymers 10:1210

    Article  CAS  PubMed Central  Google Scholar 

  33. Norajit K, Kim KM, Ryu GH (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98:377–384

    Article  CAS  Google Scholar 

  34. Pagno CH, Faris YB, Costa TMH, Rios AO, Flores SH (2016) Synthesis of biodegradable films with antioxidant properties based on cassava starch containing bixin nanocapsules. J Food Sci Technol 53:3197–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noronha CM, Carvalho SM, Lino RC, Barreto PLM (2014) Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem 159:529–535

    Article  CAS  PubMed  Google Scholar 

  36. Zaccari F, Cabrera MC, Ramos A, Saadoun A (2015) In vitro bioaccessibility of β-carotene, Ca, Mg and Zn in landrace carrots (Daucus carota, L.). Food Chem 166:365–371

    Article  CAS  PubMed  Google Scholar 

  37. Dinda S, Patwardhan AV, Goud VV, Pradhan NC (2008) Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour Technol 99:3737–3744

    Article  CAS  PubMed  Google Scholar 

  38. Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10:884–891

    Article  CAS  PubMed  Google Scholar 

  39. Tran TK, Kumar P, Kim H-R, Hou CT, Kim BS (2018) Microbial conversion of vegetable oil to hydroxy fatty acid and its application to bio-based polyurethane synthesis. Polymers 10:927

    Article  CAS  PubMed Central  Google Scholar 

  40. Li J, Zhu M (2017) Structural characterization of a vegetable oil-based polyol through liquid chromatography multistage mass spectrometry. J Polym Sci Pol Chem 55:255–262

    Article  CAS  Google Scholar 

  41. Baheiraei N, Yeganesh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37

    Article  CAS  Google Scholar 

  42. Singh BB, Shakil NA, Kumar J, Walia S, Kar A (2015) Development of slow release formulations of β-carotene employing amphiphilic polymers and their release kinetics study in water and different pH conditions. J Food Sci Technol 52:8068–8076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Semsarzadeh MA, Navarchian AH (2003) Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate). J Appl Polym Sci 90:963–972

    Article  CAS  Google Scholar 

  44. Semnani D, Nasari M, Fakhrali A (2018) PCL nanofibers loaded with beta-carotene: a novel treatment for eczema. Polym Bull 75:2015–2026

    Article  CAS  Google Scholar 

  45. Crick CR, Noimark S, Peveler WJ, Bear JC, Ivanov AP, Edel JB, Parkin IP (2015) Advanced analysis of nanoparticle composites—a means toward increasing the efficiency of functional materials. RSC Adv 5(66):53789–53795

    Article  CAS  Google Scholar 

  46. Perni S, Piccirillo C, Pratten J, Prokovich P, Chrzanowski W, Parkin IP, Wilson M (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    Article  CAS  PubMed  Google Scholar 

  47. Piñeros-Hernandez D, Medina-Jaramilo C, Lopez-Cordoa A, Goyanes S (2017) Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloid 63:488–495

    Article  CAS  Google Scholar 

  48. Gogoi S, Karak N (2014) Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain Chem Eng 2:2730–2738

    Article  CAS  Google Scholar 

  49. López-Rubio A, Lagaron JM (2010) Improvement of UV stability and mechanical properties of biopolyesters through the addition of β-carotene. Polym Degrad Stabil 95:2162–2168

    Article  CAS  Google Scholar 

  50. Lotfy S, Fawzy YHA (2014) Characterization and enhancement of the electrical performance of radiation modified poly (vinyl) alcohol/gelatin copolymer films doped with carotene. J Radiat Res Appl Sci 7:338–345

    Article  Google Scholar 

  51. Mueller L, Boehm V (2011) Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 16:1055–1069

    Article  CAS  PubMed  Google Scholar 

  52. Quirós-Sauceda AE, Ayala-Zavala JF, Olivas GI, Gonzalez-Aguilar GA (2014) Edible coatings as encapsulating matrices for bioactive compounds: a review. J Food Sci Technol 51:1674–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barba AIO, Hurtado MC, Mata MCS, Ruiz VF, Tejada MLS (2006) Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chem 95:328–336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF-2017R1A2B4002371 and 2019R1I1A3A02058523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Kim, B.S. Preparation, Characterization, and Antioxidant Activity of β-Carotene Impregnated Polyurethane Based on Epoxidized Soybean Oil and Malic Acid. J Polym Environ 27, 2001–2016 (2019). https://doi.org/10.1007/s10924-019-01492-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01492-1

Keywords

Navigation