Skip to main content

Advertisement

Log in

Novel Environmentally Friendly Superabsorbent Hydrogel Hybrids from Synthesized Star-Shaped Bio-based Monomers and Acrylic Acid

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

During the past decades, production and applications of petroleum-based superabsorbents have grown dramatically; currently, superabsorbents are produced from acrylic acid, which consequently increase the environmental concerns. The high consumption rate of superabsorbent on the one hand, and their persistence in the environment from the other hand would make the waste of this material a potential hazard for the environment. These materials are not biodegradable, and if degraded hazardous derivatives would be released into soil and water. The current work presents the synthesis and the performance of a novel superabsorbent hydrogel, based on star-shaped bio-based compartments and acrylic acid. Herein, the synthesis of two bio-based star-shaped monomers will be reported based on the condensation reaction between hydroxyl and carboxylic acid end groups of a bio-acid and a bio-alcohol. The first monomer was synthesized from glycerin, succinic acid, lactic acid, itaconic acid, and acrylic acid. The second monomer was synthesized from glycerin, lactic acid, and methacrylic acid. The monomers structures were characterized via FT-IR and 1HNMR spectroscopies. The different portions of biobased monomers (10, 30, 50, and 70 wt%) were used in combination with the acrylic acid monomer to form hybrid superabsorbents. The swelling properties and the absorbency under load (AUL) of superabsorbents were investigated in turn. The maximum absorption capacities (398.49 and 90.10 g g−1 in water and saline solution, respectively) were observed when 30 wt% of acrylic acid backbone of the superabsorbent was replaced with the bio-based monomer. Moreover, economic and environmental profiles of the hybrid SAPs have been evaluated. The comparative environmental assessment performed using life cycle analysis method, based on the material and energy balances obtained from the available literature. While the economy of the hybrid SAPs production still suffers from the high price of the employed raw biomaterials during manufacturing, the better environmental profiles obtained for the hybrid SAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  2. Shahi S, Zohuriaan-Mehr MJ, Omidian H (2017) J Bioact Compat Polym 32(2):128–145

    Article  CAS  Google Scholar 

  3. Azizi A, Kabiri K, Zohuriaan-Mehr MJ, Bouhendi H, Karami Z (2018) J Mater Res 33(16):2327–2335

    Article  CAS  Google Scholar 

  4. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  5. Bulut Y, Akçay G, Elma D, Serhatlı IE (2009) J Hazard Mater 171(1–3):717–723

    Article  CAS  Google Scholar 

  6. Jeong D, Joo SW, Hu Y, Shinde VV, Cho E, Jung S (2018) Eur Polym J 105:17–25

    Article  CAS  Google Scholar 

  7. Yang ST, Park YS (2018) Drug Deliv Transl Res 8(3):702–707

    Article  CAS  Google Scholar 

  8. Capanema NS, Mansur AA, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS (2018) Int J Biol Macromol 106:1218–1234

    Article  CAS  Google Scholar 

  9. Sharma S, Dua A, Malik A (2017) J Polym Res 24(7):104

    Article  Google Scholar 

  10. Global market insights (2014) Super absorbent polymer market size—industry share report, 2025. https://www.gminsights.com/industry-analysis/synthetic-and-bio-super-absorbent-polymer-sap-market. Accessed 8 June 2019

  11. Mukerabigwi JF, Lei S, Fan L, Wang H, Luo S, Ma X, Qin J, Huang X, Cao Y (2016) RSC Adv 6(38):31607–31618

    Article  CAS  Google Scholar 

  12. Panwar NL, Kaushik SC, Kothari S (2011) Renew Sustain Energy Rev 15(3):1513–1524

    Article  Google Scholar 

  13. Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier, Amsterdam

    Google Scholar 

  14. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Results of screening for potential candidates from sugars and synthesis gas, vol 1. Department of Energy, Washington, DC

    Book  Google Scholar 

  15. Chen Z, Liu M, Ma S (2005) React Funct Polym 62(1):85–92

    Article  CAS  Google Scholar 

  16. Ma S, Liu M, Chen Z (2004) J Appl Polym Sci 93(6):2532–2541

    Article  CAS  Google Scholar 

  17. Ma J, Li X, Bao Y (2015) RSC Adv 5(73):59745–59757

    Article  CAS  Google Scholar 

  18. Shi W, Dumont MJ, Ly EB (2014) Eur Polym J 54:172–180

    Article  CAS  Google Scholar 

  19. Zhang J, Li A, Wang A (2006) React Funct Polym 66(7):747–756

    Article  CAS  Google Scholar 

  20. Essawy HA, Ghazy MB, El-Hai FA, Mohamed MF (2016) Int J Biol Macromol 89:144–151

    Article  CAS  Google Scholar 

  21. Li A, Wang A, Chen J (2004) J Appl Polym Sci 92(3):1596–1603

    Article  CAS  Google Scholar 

  22. Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A, Allahdadi I (2006) J Appl Polym Sci 102(6):5667–5674

    Article  CAS  Google Scholar 

  23. Liu P, Jiang L, Zhu L, Wang A (2014) Ind Eng Chem Res 53(11):4277–4285

    Article  CAS  Google Scholar 

  24. Mayer CR, Thouvenot R, Lalot T (2000) Macromolecules 33(12):4433–4437

    Article  CAS  Google Scholar 

  25. Bao Y, Ma J, Li N (2011) Carbohydr Polym 84(1):76–82

    Article  CAS  Google Scholar 

  26. Zhang B, Cui Y, Yin G, Li X, Liao L, Cai X (2011) Polym Compos 32(5):683–691

    Article  Google Scholar 

  27. Suo A, Qian J, Yao Y, Zhang W (2007) J Appl Polym Sci 103(3):1382–1388

    Article  CAS  Google Scholar 

  28. Wu F, Zhang Y, Liu L, Yao J (2012) Carbohydr Polym 87(4):2519–2525

    Article  CAS  Google Scholar 

  29. Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ (2008) Clean-Soil Air Water 36(8):657–661

    Article  CAS  Google Scholar 

  30. Min YN, Yan F, Liu FZ, Coto C, Waldroup PW (2010) Int J Poult Sci 9(1):1–4

    Article  CAS  Google Scholar 

  31. Cukalovic A, Stevens CV (2008) Biofuels, Bioprod Biorefin 2(6):505–529

    Article  CAS  Google Scholar 

  32. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6(5):1415–1442

    Article  CAS  Google Scholar 

  33. Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW (2005) Bioresour Technol 96(13):1492–1498

    Article  CAS  Google Scholar 

  34. Willke T, Vorlop K-D (2001) Appl Microbiol Biotechnol 56(3–4):289–295

    Article  CAS  Google Scholar 

  35. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Chem Eng Technol 31(5):647–654

    Article  CAS  Google Scholar 

  36. Dong CM, Qiu KY, Gu ZW, Feng XD (2002) J Polym Sci Part A 40(3):409–415

    Article  CAS  Google Scholar 

  37. Cameron DJA, Shaver MP (2011) Chem Soc Rev 40(3):1761–1776

    Article  CAS  Google Scholar 

  38. Schaefgen JR, Flory PJ (1948) JACS 70(8):2709–2718

    Article  CAS  Google Scholar 

  39. Jahandideh A, Muthukumarappan K (2017) Eur Polym J 87:360–379

    Article  CAS  Google Scholar 

  40. Esmaeili N, Jahandideh A, Muthukumarappan K, Åkesson D, Skrifvars M (2017) J Appl Polym Sci 134(39):45341

    Article  Google Scholar 

  41. Jahandideh A, Esmaeili N, Muthukumarappan K (2017) Polym Int 66(7):1021–1030

    Article  CAS  Google Scholar 

  42. Jahandideh A, Esmaeili N, Muthukumarappan K (2018) J Polym Environ 26(5):2072–2085

    Article  CAS  Google Scholar 

  43. Jahandideh A, Esmaeili N, Muthukumarappan K (2018) Polym Degrad Stab 153:201–209

    Article  CAS  Google Scholar 

  44. Finne A, Albertsson AC (2003) J Polym Sci Part A 41(9):1296–1305

    Article  CAS  Google Scholar 

  45. Aloorkar NH, Kulkarni AS, Patil RA, Ingale DJ (2012) Int J Pharm Sci Nanotech 5:1675–1684

    Google Scholar 

  46. Keys KB, Andreopoulos FM, Peppas NA (1998) Macromolecules 31(23):8149–8156

    Article  CAS  Google Scholar 

  47. Nagahama K, Ouchi T, Ohya Y (2008) Adv Funct Mater 18(8):1220–1231

    Article  CAS  Google Scholar 

  48. Park SY, Han DK, Kim SC (2001) Macromolecules 34(26):8821–8824

    Article  CAS  Google Scholar 

  49. Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C, Luo F, Guo G, Zhao X, Wei Y, Qian Z (2010) Colloids Surf A 358(1–3):128–134

    Article  CAS  Google Scholar 

  50. Zhang H, Yan Q, Kang Y, Zhou L, Zhou H, Wu S (2012) Polymer 53(17):3719–3725

    Article  CAS  Google Scholar 

  51. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) J Environ Manag 91(1):1–21

    Article  Google Scholar 

  52. Jahandideh A, Johnson TJ, Esmaeili N, Johnson MD, Richardson JW, Muthukumarappan K, Anderson GA, Halfmann C, Zhou R, Gibbons WR (2017) Algal Res 23:1–11

    Article  Google Scholar 

  53. Jahandideh A, Muthukumarappan K (2016) Eur Polym J 83:344–358

    Article  CAS  Google Scholar 

  54. Dabbaghi A, Jahandideh A, Kabiri K, Ramazani A, Zohuriaan-Mehr MJ (2019) Polym Plast Technol Eng 7:1–13

    Google Scholar 

  55. Kreß HJ, Heitz W (1981) Rapid Commun 2(6–7):427–434

    Article  Google Scholar 

  56. Tarcha PJ, Su L, Baker T, Langridge D, Shastri V, Langer R (2001) J Polym Sci Part A 39(24):4189–4195

    Article  CAS  Google Scholar 

  57. Salimi H, Pourjavadi A, Seidi F, Jahromi PE, Soleyman R (2010) J Appl Polym Sci 117(6):3228–3238

    CAS  Google Scholar 

  58. Li A, Wang A, Chen J (2004) J Appl Polym Sci 94(5):1869–1876

    Article  CAS  Google Scholar 

  59. Chang S, Kim M, Oh S, Min JH, Kang D, Han C, Ahn T, Koh WG, Lee H (2018) Polymer 145:174–183

    Article  CAS  Google Scholar 

  60. Ghasri M, Jahandideh A, Kabiri K, Bouhendi H, Zohuriaan-Mehr MJ, Moini N (2019) Polym Adv Technol 30(2):390–399

    Article  CAS  Google Scholar 

  61. Moini N, Kabiri K, Zohuriaan-Mehr Mohammad J, Omidian H, Esmaeili N (2017) Polym Adv Technol 28(9):1132–1147

    Article  CAS  Google Scholar 

  62. Wang Y, Liu M, Ni B, Xie L (2012) Ind Eng Chem Res 51(3):1413–1422

    Article  CAS  Google Scholar 

  63. Pourjavadi A, Amini-Fazl MS, Ayyari M (2007) Express Polym Lett 1:488–494

    Article  CAS  Google Scholar 

  64. Petrescu L, Fermeglia M, Cormos CC (2016) J Clean Prod 133:294–303

    Article  CAS  Google Scholar 

  65. Thannimalay L, Yusoff S, Zawawi NZ (2013) Aust J Basic Appl Sci 7:421–431

    CAS  Google Scholar 

  66. Cok B, Tsiropoulos I, Roes AL, Patel MK (2014) Biofuels Bioprod Biorefin 8(1):16–29

    Article  CAS  Google Scholar 

  67. Malça J, Coelho A, Freire F (2014) Appl Energy 114:837–844

    Article  Google Scholar 

  68. Patel MK, Crank M, Dornburg V, Hermann BG, Roes AL, Hüsing B, Overbeek LV, Terragni F, Recchia E (2006) Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. UU CHEM NW&S (Copernicus)

  69. Moini N, Kabiri K (2015) Iran Polym J 24(11):977–987

    Article  CAS  Google Scholar 

  70. Dreyer LC, Niemann AL, Hauschild MZ (2003) Int J Life Cycle Assess 8(4):191–200

    Article  CAS  Google Scholar 

  71. Tan HW, Aziz AA, Aroua MK (2013) Renew Sustain Energy Rev 27:118–127

    Article  CAS  Google Scholar 

  72. Morales M, Dapsens Pierre PY, Giovinazzo I, Witte J, Mondelli C, Papadokonstantakis S, Hungerbühler K, Pérez-Ramírez J (2015) Energy Environ Sci 8(2):558–567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kourosh Kabiri or Ali Ramazani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbaghi, A., Jahandideh, A., Kabiri, K. et al. Novel Environmentally Friendly Superabsorbent Hydrogel Hybrids from Synthesized Star-Shaped Bio-based Monomers and Acrylic Acid. J Polym Environ 27, 1988–2000 (2019). https://doi.org/10.1007/s10924-019-01486-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01486-z

Keywords

Navigation