Skip to main content
Log in

Ggum-poly(Itaconic Acid) Based Superabsorbents Via Two-Step Free-Radical Aqueous Polymerization for Environmental and Antibacterial Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ggum-based conducting hydrogels possessing dye removal and antibacterial property were developed by two-step free-radical aqueous polymerization method. Conductivity was introduced with polyaniline (PANI) chains incorporated within the crosslinked network of Ggum-poly(itaconic acid) superabsorbent. The material properties of the synthesized samples were characterized using FTIR spectroscopy, thermal analysis and scanning electron microscopy techniques. Results showed that synthesized samples exhibited the best antibacterial activity against Gram-positive bacteria. Synthesized samples were found to be effective in removal of toxic methylene blue (MB) dye from the waste water. The adsorption kinetics of superabsorbents has been described by using pseudo first and pseudo second order kinetics models. Furthermore, application of hydrogels to improve the water retention properties of different soils was also studied for agricultural purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ulijn RV, Bib N, Jayawarna V, Thornton PD, Todd SJ (2007) R. Mart Bioresponsive hydrogels. Mater Today 10:40–48

    Article  CAS  Google Scholar 

  2. Mostafa KM, Morsy MS (2004) Modification of carbohydrate polymers via grafting of methacrylonitrile onto pregelled starch using potassium monopersulfate/Fe2+ redox pair. Polym Int 53:885–890

    Article  CAS  Google Scholar 

  3. Mundargi RC, Patil SA, Aminabhavi TM (2007) Evaluation of acrylamidegrafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr Polym 69:130–141

    Article  CAS  Google Scholar 

  4. Mundargi RC, Patil SA, Agnihotri SA, Aminabhavi TM (2007) Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis. Drug Dev Ind Pharm 33:255–264

    Article  CAS  Google Scholar 

  5. Zhang LM, Wang GH, Lu HW, Yang C, Yan L (2005) A new class of starch based hydrogels incorporating acrylamide and vinyl pyrrolidone: effects of reaction variables on water sorption behavior. J Bioact Compat Polym 20(2005):491–501

    Article  CAS  Google Scholar 

  6. Higa OZ, Rogero SO, Machado LDB, Mathor MB, Lugao AB (1999) Biocompatibility study for PVP wound dressing obtained in different conditions. Radiat Phys Chem 55:705–707

    Article  CAS  Google Scholar 

  7. Sen M, Avci EN (2005) Radiation synthesis of poly (N-vinyl-2-pyrrolidone)-κ-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J Biomed Mater Res Part A 74A:187–196

    Article  CAS  Google Scholar 

  8. Roy N, Saha N, Humpolicek P, Saha P (2010) Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater 8:338–357

    Article  CAS  Google Scholar 

  9. Roy N, Saha N, Kitano T, Saha P (2010) Novel Hydrogels of PVP-CMC and their swelling effect on viscoelastic properties. J Appl Polym Sci 117:1703–1710

    CAS  Google Scholar 

  10. Fan S, Tang Q, Wu J, Hu D, Lin J (2008) Two step synthesis of polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network hydrogel and its swelling, conducting and mechanical properties. J Mater Sci 43:5898–5904

    Article  CAS  Google Scholar 

  11. Pissis P, Kyritsis A (1997) Electrical conductivity studies in hydrogels. Solid State Ionics 97:105–113

    Article  CAS  Google Scholar 

  12. Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972

    Article  CAS  Google Scholar 

  13. Schwendeman I, Hickman R, Sonmez G, Schottland P, Zong K, Welsh DW, Reynolds JR (2002) Enhanced contrast dual polymer electrochromic devices. Chem Mater 14:3118–3122

    Article  CAS  Google Scholar 

  14. De Paoli MA, Casalbore-Miceli G, Girotto EM, Gazotti WA (1999) All polymeric solid state electrochromic devices. Electrochimica Acta 44:2983–2991

    Article  Google Scholar 

  15. Dubois JC (1989) Polyheterocyclic conducting polymers and composites derivatives. Synth Met 28:C871–C878

    Article  CAS  Google Scholar 

  16. Roncali J, Garreau D, Delabouglise D, Garnier F, Lemaire M (1989) Communications modification of thestructure and electrochemical properties of poly (thiophene) by ether groups. J Chem Soc, Chem Commun 11:679–781

    Article  Google Scholar 

  17. Salaneck WR (1991) Electroluminescence in conjugated polymers. Nature 397:121–128

    Google Scholar 

  18. Cirpan A, Alkan S, Toppare L, Hepuzer Y, Yagci Y (2003) Immobilization of Invertase in conducting copolymers of 3-methylthienyl methacrylate. Bioelectrochemistry 59:29–33

    Article  CAS  Google Scholar 

  19. Alkan S, Toppare L, Bakir U, Yagci Y (2001) Immobilization of urease in conducting Thiophene-capped poly(methyl methacrylate)/pyrrole matrices. Synth Met 123:95–99

    Article  CAS  Google Scholar 

  20. Buchholz FL, Graham AT (eds) (1997) Modern superabsorbent polymer technology. Wiley, New York

    Google Scholar 

  21. Lokhande HT, Gotmare VD (1999) Utilization of textile loom waste as a highly absorbent polymer through graft copolymerization. Bioresour Technol 68:283–286

    Article  CAS  Google Scholar 

  22. Nge T, Hori N, Takemura A (2004) Swelling behavior of chitosan/poly(acrylic acid) complex. J Appl Polym Sci 92:2930–2940

    Article  CAS  Google Scholar 

  23. Lokhande HT, Varadara PV (1992) A new Guar gum-based superabsorbent polymer synthesized using gamma radiation as a soil additive. Bioresour Technol 42:119–122

    Article  CAS  Google Scholar 

  24. Bajpai SK, Johnson S (2005) Superabsorbent hydrogels for removal of divalent toxic ions Part I: Synthesis and swelling characterization. React Funct Polym 62:271–283

    Article  CAS  Google Scholar 

  25. Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turk J Chem 30:595–608

    CAS  Google Scholar 

  26. Singh RP, Pal S, Mal D (2006) A high performance flocculating agent and viscosifiers based on cationic guar gum. Macromolecular Symposia 242:227–234

    Article  CAS  Google Scholar 

  27. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. J Adv Mater Res 96(2010):177–182

    Article  CAS  Google Scholar 

  28. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with suberabsorbent and water retention. Bioresour Technol 99:547–554

    Article  CAS  Google Scholar 

  29. Zendehdel M, Kalateh Z, Alikhani H (2011) Efficiency evaluation of nay zeolite and tio 2 /nay zeolite in removal of methylene blue dye from aqueous solutions. Iran J Environ Health Sci Eng 8:265–272

    CAS  Google Scholar 

  30. Bajpai SK, Chand N, Mahendra M (2012) The adsorptive removal of cationic dye from aqueous solution using poly(methacrylic acid) hydrogels: Part-I equilibrium studies. Int J Environ Sci 2:1609–1624

    CAS  Google Scholar 

  31. Abdel HA, Kader SR (1995) Seddkey In vitro study of the effect of some medicinal plants on the growth of some dermatophytes. Assiut Vet Med J 34:67–77

    Google Scholar 

  32. Chen J, Zhao Y (2000) Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents. J Appl Polym Sci 75:808–814

    Article  CAS  Google Scholar 

  33. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3 Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polymer J 40:1363–1370

    Article  CAS  Google Scholar 

  34. Athawale VD, Rathi SC (1999) Graft polymerization: starch as a model substrate. J Macromol Sci C Polym Rev 39:445–480

    Article  Google Scholar 

  35. Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis of crosslinked networks of gum ghatti with different vinyl monomer mixtures and effect of ionic strength of various cations on its swelling behavior. Int J Polym Mater 61:99–115

    Article  CAS  Google Scholar 

  36. Pal S, Ghorai S, Dash MK, Ghosh S, Udayabhanu G (2011) Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMC-g-PAM) synthesized by conventional and microwave assisted method. J Hazard Mater 192:1580–1588

    Article  CAS  Google Scholar 

  37. Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ (2003) Modified chitosan. II. H-chitoPAN, a novel pHresponsive superabsorbent hydrogel. J Appl Polym Sci 90:3115–3121

    Article  CAS  Google Scholar 

  38. Sharma K, Kumar V, Kaith BS, Kumar V, Som S, Kalia S, Swart HC (2014) A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gumghatti by a soil burial method. RSC Adv 4:25637–25649

    Article  CAS  Google Scholar 

  39. Eromosele IC (1994) Graft copolymer of acrylonitrile onto cotton celluose by potassium permanganate Thioacetamide redox system. J Appl Polym Sci 51:1817–1827

    Article  CAS  Google Scholar 

  40. Barminas JT, Ajayi JO, Osemeahon SA (2005) Development of sodium alginate and konkoli gum-grafted-polyacrylamide blend memebrane. Sci Forum J Pure Appl Sci 8:70–79

    Google Scholar 

  41. Saber-Samandari S, Gazi M, Yilmaz E (2012) UV-induced synthesis of chitosan-g polyacrylamide semi-IPN superabsorbent hydrogels. Polym Bull 68:1623–1939

    Article  CAS  Google Scholar 

  42. Tiwari A, Singh V (2008) Microwave-induced synthesis of electrical conducting gum acacia-graft-polyaniline. Carbohydr Polym 74:427–434

    Article  CAS  Google Scholar 

  43. Lin J, Tang Q, Wu J, Hao S (2007) The synthesis and electrical conductivity of a polyacrylate/graphite hydrogel. React Funct Polym 67:275–281

    Article  CAS  Google Scholar 

  44. Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2006) Preparation and characterization of polyaniline/chitosan blend film. Carbohydr Polym 64:560–568

    Article  CAS  Google Scholar 

  45. Sen G, Mishra S, Jha U, Pal S (2010) Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int J Biol Macromol 47:164–170

    Article  CAS  Google Scholar 

  46. Srinatha A, Pandit JK, Singh S (2008) Ionic cross-linked chitosan beads for extended release of ciprofloxacin: in vitro characterization. Ind J Pharm Sci 70:16–21

    Article  CAS  Google Scholar 

  47. Senkal BF, Yavuz E (2006) Preparation of poly(vinyl pyrrolidone) grafted sulfonamide based polystyrene resin and its use for the removal of dye from water. Polym Adv Technol 17:928–931

    Article  CAS  Google Scholar 

  48. Rath SK, Singh RP (1998) On the characterization of grafted and ungrafted starch, amylose, and amylopectin. J Appl Polym Sci 70:1795–1810

    Article  CAS  Google Scholar 

  49. Fil BA, Özmetin C, Korkmaz M (2012) Cationic dye (methylene blue) removal from aqueous solution by montmorillonite. Bull Korean Chem Soc 33(2012):3184–3190

    Article  Google Scholar 

  50. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852

    Article  CAS  Google Scholar 

  51. Murali Y, Mohan KJ, Lee T, Premkumar KE (2007) Geckeler Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Institute of Technology, Jalandhar (Punjab) for providing laboratories facilities. Authors are also thankful to Department of Civil, Chemical, Environmental and Material Engineering, University of Bologna, Italy for providing TGA spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susheel Kalia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Kalia, S., Kaith, B.S. et al. Ggum-poly(Itaconic Acid) Based Superabsorbents Via Two-Step Free-Radical Aqueous Polymerization for Environmental and Antibacterial Applications. J Polym Environ 25, 176–191 (2017). https://doi.org/10.1007/s10924-016-0796-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0796-1

Keywords

Navigation