Skip to main content

Advertisement

Log in

Development of Tailor-Made Superabsorbent Polymers: Review of Key Aspects from Raw Material to Kinetic Model

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The ability of superabsorbent polymers (SAP) to absorb and retain a large amount of water and/or aqueous solution enables their applications in areas such as agriculture, medicine and water treatment. This versatility has attracted the attention of researchers interested in developing new materials, especially bio-based polymers. As a result, there are numerous studies reporting different types of monomers and crosslinks to produce SAP. Conversely, in the literature there is a lack of discussion of the modeling approaches to describe SAP production. This paper makes a comprehensive and systematic review of the main issues for the synthesis of new SAP materials: monomer and crosslink types, as well as the kinetic model. A database on the raw materials to produce SAP for the main applications should be useful for those interested in producing new SAP materials. The mathematical model correlates structural properties with the synthesis conditions, thus supporting the development of tailor-made products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, New York

    Google Scholar 

  2. Grand View Research (2018). Super absorbent polymer market analysis report by application (female hygiene products, baby diapers, agriculture, adult incontinence products), by region, and segment forecasts, 2018–2025. Report ID: 978-1-68038-617-2;

  3. Zohuriaan-Mehr MJ, Kabiri K (2008) Iran Polym J 451:477

    Google Scholar 

  4. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2010) Polym Compos 277:289

    Google Scholar 

  5. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) J Mat Sci 5711:5735

    Google Scholar 

  6. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Iran Polym J 375:398

    Google Scholar 

  7. Laftah WA, Hashim S, Ibrahim AN (2011) Polym Plast Technol Eng 1475:1486

    Google Scholar 

  8. Maitra J, Shukla VK (2014) J Polym Sci A 25:31

    Google Scholar 

  9. Faheem U, Muhammad BH, Javed F, Ahmad Z, Akil HM (2015) Mater Sci Eng C 414:433

    Google Scholar 

  10. Gemeinhart RA, Chen J, Park H, Park K (2000) J Biomater Sci 1371:1380

    Google Scholar 

  11. Lee WF, Huang YC (2007) J Appl Polym Sci 1992:1999

    Google Scholar 

  12. Omidian H, Rocca J, Park K (2005) J Control Release 3:12

    Google Scholar 

  13. Ahmed EM (2015) J Adv Res 105:121

    Google Scholar 

  14. Athawale VD, Lele V (2001) Starch/Stärke 7:13

    Google Scholar 

  15. Dutkiewicz JK (2002) J Biomed Mater Res B 373:381

    Google Scholar 

  16. Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Am J Agric Biol Sci 299:314

    Google Scholar 

  17. Caló E, Khutoryanskiy VV (2015) Eur Polym J 252:267

    Google Scholar 

  18. Halake K, Kim HJ, Birajdar M, Kim BS, Bae H, Lee C, Kim YJ, Kim S, Ahn S, An SY, Jung SH, Lee J (2016) J Ind Eng Chem 16:22

    Google Scholar 

  19. Gonçalves D, Pinto VD, Dias CS, Costa PF (2011) Macromol Symp 107:125

    Google Scholar 

  20. Mikos AG, Takoudis CG, Peppas NA (1986) Macromolecules 2174:2182

    Google Scholar 

  21. Mikos AG, Takoudis CG, Peppas NA (1987) Polymer 998:1004

    Google Scholar 

  22. Mikos AG, Peppas NA (1987) J Cont Rel 53:62

    Google Scholar 

  23. Frank M (2012) Superabsorbents. Ullman’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  24. Wack H, Ulbricht M (2007) In: Proceedings of the first international conference on self healing materials, Noordwijk aan Zee, The Netherlands;

  25. Sawut A, Yimit M, Sun W, Nurulla I (2014) Carboh Polym 231:239

    Google Scholar 

  26. Ferfera-Harrar H, Aionuaz N, Dairi N, Hadj-Hamou AS (2014) J App Polym Sci 131:39747

    Article  CAS  Google Scholar 

  27. Anirudhan TS, Rijith S, Suchithra PS (2011) J App Polym Sci 122:874–884

    Article  CAS  Google Scholar 

  28. Li Q, Liu J, Yue Q, Gao B (2014) J App Polym Sci 39748:39756

    Google Scholar 

  29. Jaber F (2012) New routes for synthesis of environmentally friendly superabsorbent polymer. MSc. Thesis. An-Najah National University, Nablus, Palestine;

  30. Candido JS, Leitao CF, Ricardo MPS, Feitosa PA, Muniz ED, Rodrigues HÁ (2012) J App Polym Sci 879:887

    Google Scholar 

  31. Zhong K, Lin ZT, Zheng XL, Jiang GB, Fang YS, Mao XY, Liao ZW (2013) Carbohydr Polym 1367:1376

    Google Scholar 

  32. Yang Y, Tong Z, Geng Y, Li Y, Zhang M (2013) J Agr Food Chem 8166:8174

    Google Scholar 

  33. Salam A, Lucia L, Jameel H (2015) ACS Sustain Chem Eng 524:532

    Google Scholar 

  34. Gao J, Yanga Q, Ran F, Ma G, Lei Z (2016) Appl Clay Sci 739:747

    Google Scholar 

  35. Li X, Li Q, Xu X, Su Y, Yue Q, Gao B (2016) J Taiwan Inst Chem E 564:572

    Google Scholar 

  36. Qiao D, Liu H, Yu L, Bao X, Simon GP, Petinakis E, Chen L (2016) Carbohydr Polym 146:154

    Google Scholar 

  37. Wen P, Han Y, Wu Z, He Y, Ye B, Wang J (2017) Arab J Chem 922:934

    Google Scholar 

  38. Zhou T, Wang Y, Huang S, Zhao Y (2018) Sci Total Environ 422:430

    Google Scholar 

  39. Mordor Intelligence (2015) Global super absorbent polymer (SAP) market report

  40. Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ (2005) Polym Adv Tech 659:666

    Google Scholar 

  41. Wang LF, Rhim JW (2015) Int J Biol Macromol 460:468

    Google Scholar 

  42. Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Int J Pharm 329:337

    Google Scholar 

  43. Bai MY, Hu YM (2014) J Microencapsul 373:381

    Google Scholar 

  44. Jeong JH, Kim EH, Han GD, Nah JW, It Y, Son TI (2016) J Ind Eng Chem 33:40

    CAS  Google Scholar 

  45. Choi C, Nam JP, Nah JW (2016) J Ind Eng Chem 1:10

    Google Scholar 

  46. Liu W, Wu ZL, Wang YJ, Li R, Yin NN, Jiang JX (2015) J Ind Eng Chem 138:144

    Google Scholar 

  47. Barata JF, Pinto RJ, Serra VI, Silvestre AJ, Trindade T, Neves MP, Cavaleiro JA, Daina S, Sadocco P, Rocha Freire CS (2016) Biomacromolecules 1395:1403

    Google Scholar 

  48. Idris A, Ismail NS, Hassan N, Misran E, Ngomsik AF (2012) J Ind Eng Chem 1582:1589

    Google Scholar 

  49. Liu Y, Chen C (2016) Adv Drug Deliv Rev 76:89

    Google Scholar 

  50. Bergera J, Reista M, Mayera JM, Feltb O, Gurny R (2004) Eur J Pharm Biopharm 35:52

    Google Scholar 

  51. Wang L, Peng Q, Li S, Dub L, Cai H (2013) J Ind Eng Chem 655:658

    Google Scholar 

  52. Cui L, Xiong Z, Guo Y, Liu Y, Zhao J, Zhang C, Zhu P (2015) Carbohydr Polym 330:337

    Google Scholar 

  53. Qin Y, Guo XW, Li L, Wang HW, Kim W (2013) J Med Food 487:498

    Google Scholar 

  54. Cho HJ, Chung M, Shim MS (2015) J Ind Eng Chem 15:25

    Google Scholar 

  55. Wang MH, Kim JC (2015) J Ind Eng Chem 206:212

    Google Scholar 

  56. Negm NA, Sheikhb RE, El-Farargyb AF, Hefnia HH, Bekhit M (2015) J Ind Eng Chem 526:534

    Google Scholar 

  57. Lin W, Li Q, Zhu T (2012) J Ind Eng Chem 934:940

    Google Scholar 

  58. Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G (2016) Food Chem 1174:1181

    Google Scholar 

  59. Je JY, Park PJ, Kim SK (2004) Food Chem Toxicol 381:387

    Google Scholar 

  60. Priya P, Raja A, Raj V (2015) Cellulose 699:712

    Google Scholar 

  61. Tripathi S, Mehrotra GK, Dutta PK (2011) Bull Mater Sci 29:35

    Google Scholar 

  62. Liu F, Antoniou J, Li Y, Majeed H, Liang R, Ma Y, Ma J, Zhong F (2016) Food Hydrocoll 291:300

    Google Scholar 

  63. Kim J, Hwang J, Kang H, Choi J (2015) J Ind Eng Chem 44:48

    Google Scholar 

  64. Muzzarelli RA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) Carbohydr Polym 995:1012

    Google Scholar 

  65. Du YZ, Wang L, Yuan H, Wei XH, Hu FQ (2009) Colloids Surf B Biointerfaces 257:263

    Google Scholar 

  66. Guo X, Qiu F, Dong K, Zhou X, Qi J, Zhou Y, Yang D (2012) J Ind Eng Chem 2177:2183

    Google Scholar 

  67. Giri TK, Choudhary C, Alexander A, Ajazuddin A, Badwaik H, Tripathy M, Tripathi DK (2013) Indian J Pharm Sci 619:627

    Google Scholar 

  68. Cui S, Yao B, Suna X, Hua J, Zhoub Y, Liu Y (2016) Mater Sci Eng, C 885:893

    Google Scholar 

  69. Zhou S, Xue A, Zhang Y, Li M, Li K, Zhao Y, Xing W (2015) Appl Clay Sci 220:229

    Google Scholar 

  70. Kim HM, Kang YL, Chung WJ, Kyeong S, Jeong S, Kang H, Jeong C, Rho WY, Kim DH, Jeong DH, Lee YS, Jun BH (2015) J Ind Eng Chem 158:162

    Google Scholar 

  71. Villaça JC, Silva LC, Barbosa LH, Rodrigues CR, Lira LM, Carmo FA, Sousa VP, Tavares MI, Cabral LM (2015) J Ind Eng Chem 76(44):48

    Google Scholar 

  72. Hui B, Zhang Y, Ye L (2015) J Ind Eng Chem 868:876

    Google Scholar 

  73. Pulicharla R, Marques C, Das RK, Rouissi T, Brar SK (2016) Int J Biol Macromol 171:178

    Google Scholar 

  74. Popa MI, Aelenei N, Popa VI, Andrei D (2000) React Funct Polym 35:43

    Google Scholar 

  75. Zhang H, Huang S, Yang J, Zhao Y (2015) Food Hydrocoll 260:273

    Google Scholar 

  76. Gibis M, Ruedt C, Weiss J (2016) Food Res Int 105:113

    Google Scholar 

  77. Venkatachalam D, Vediappan V, Kaliappa S (2013) J App Pol Sci 1350:1361

    Google Scholar 

  78. Senna A, Menezes AJ, Botaro VR (2013) Polímeros 59:64

    Google Scholar 

  79. Sadeghi M, Hosseinzadeh H (2008) J Bio Comp Pol 381:404

    Google Scholar 

  80. Hild G, Okasha R (1985) Die Makromol Chem 93:110

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen V. Pontes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.V.A., Costa, G.M.N. & Pontes, K.V. Development of Tailor-Made Superabsorbent Polymers: Review of Key Aspects from Raw Material to Kinetic Model. J Polym Environ 27, 1861–1877 (2019). https://doi.org/10.1007/s10924-019-01485-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01485-0

Keywords

Navigation