Skip to main content

Advertisement

Log in

Synthesis and Characterization of a Novel pH-Sensitive Aluminum Crosslinked Carboxymethyl Tragacanth Beads for Extended and Enteric Drug Delivery

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Carboxymethyl tragacanth (CM-TG) with a DS of 1.2 was synthesized and characterized for drug delivery using diclofenac sodium as a model drug. The mixture of CM-TG and drug was ionically crosslinked using aluminum chloride to form drug-loaded beads. The concentrations of 10 and 20% w/w solution of CM-TG were found to produce beads with acceptable qualities. The beads exhibited pH-dependent swelling. The highest swelling was observed at pH 6.8 which evidences the possibility to release the drug in the colon. FT-IR and TGA confirmed carboxymethylation of tragacanth and the absence of drug-polymer interaction. The diclofenac sodium entrapment efficiency was 30–35% while the loading varies from 4.5 to 18% w/w based upon the drug-polymer ratio. The beads could extend the drug release up to 180 min at pH 6.8. The pH-responsive CM-TG hydrogel beads are biocompatible and could be exploited as a new excipient in developing enteric release formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lapasin R (2012) Rheology of industrial polysaccharides: theory and applications. Springer Science & Business Media, New York

    Google Scholar 

  2. Roshchina VV, Roshchina VD (2012) The excretory function of higher plants. Springer Science & Business Media, New York

    Google Scholar 

  3. Mirhosseini H, Amid BT (2012) Food Res Int 461:387

    Article  CAS  Google Scholar 

  4. Şen M, Hayrabolulu H, Taşkın P, Torun M, Demeter M, Cutrubinis M, Güven O (2016) Radiat Phys Chem 124:225

    Article  CAS  Google Scholar 

  5. Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ (2011) Carbohyd Polym 833:1031

    Article  CAS  Google Scholar 

  6. Gupta S, Sharma P, Soni P (2004) J Appl Polym Sci 944:1606

    Article  CAS  Google Scholar 

  7. Kaity S, Isaac J, Ghosh A (2013) Carbohyd Polym 941:456

    Article  CAS  Google Scholar 

  8. Gupta AP, Verma DK (2015) J Nanostruct Chem 54:405

    Article  CAS  Google Scholar 

  9. Rajput G, Pandey I, Joshi G (2015) Carbohyd Polym 117:494

    Article  CAS  Google Scholar 

  10. Srivastava A, Gowda DV, Hani U, Shinde CG, Osmani RAM (2015) RSC Adv 555:44652

    Article  CAS  Google Scholar 

  11. Pandey PK, Banerjee J, Taunk K, Behari K (2003) J Appl Polym Sci 895:1341

    Article  CAS  Google Scholar 

  12. Pandey PK, Srivastava A, Tripathy J, Behari K (2006) Carbohyd Polym 654:414

    Article  CAS  Google Scholar 

  13. Pandey S, Mishra SB (2011) Int J Biol Macromol 494:527

    Article  CAS  Google Scholar 

  14. Behari K, Kumar R, Tripathi M, Pandey PK (2001) Macromol Chem Phys 2029:1873

    Article  Google Scholar 

  15. Mundargi RC, Agnihotri SA, Patil SA, Aminabhavi TM (2006) J Appl Polym Sci 1011:618

    Article  CAS  Google Scholar 

  16. Gupta S, Sharma P, Soni P (2005) Carbohyd Polym 594:501

    Article  CAS  Google Scholar 

  17. Rajput G, Pandey I, Joshi G, Bisht SS (2015) J Indian Acad Wood Sci 121:1

    Article  Google Scholar 

  18. Baveja S, Rao KR, Devi KP (1987) Int J Pharm 391:39

    Article  Google Scholar 

  19. Gralen N, Kärrholm M (1950) J Colloid Sci 51:21

    Article  Google Scholar 

  20. Pushpamalar V, Langford SJ, Ahmad M, Hashim K, Lim YY (2013) J Appl Polym Sci 1281:451

    Article  CAS  Google Scholar 

  21. Veeramachineni AK, Sathasivam T, Muniyandy S, Janarthanan P, Langford SJ, Yan LY (2016) Appl Sci 66:170

    Article  CAS  Google Scholar 

  22. Bao D, Chen M, Wang H, Wang J, Liu C, Sun R (2014) Carbohyd Polym 110:113

    Article  CAS  Google Scholar 

  23. Boppana R, Kulkarni RV, Setty CM, Kalyane NV (2010) Acta Pharmaceutica Sciencia 52:137

    CAS  Google Scholar 

  24. Khalil HA, Ismail H, Rozman H, Ahmad M (2001) Eur Polymer J 375:1037

    Article  Google Scholar 

  25. Kačuráková M, Belton PS, Wilson RH, Hirsch J, Ebringerová A (1998) J Sci Food Agric 771:38

    Article  Google Scholar 

  26. Peng HH, Chen J, Jiang DY, Li M, Feng L, Losic D, Dong F, Zhang YX (2016) J Colloid Interface Sci 484:1

    Article  CAS  PubMed  Google Scholar 

  27. Sun R, Tomkinson J, Wang Y, Xiao B (2000) Polymer 417:2647

    Article  Google Scholar 

  28. Kaith BS, Jindal R, Kapur G (2013) Iran Polym J 228:561

    Google Scholar 

  29. Biswal D, Singh R (2004) Carbohyd Polym 574:379

    Article  CAS  Google Scholar 

  30. Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Carbohyd Polym 642:312

    Article  CAS  Google Scholar 

  31. Haxaire K, Marechal Y, Milas M, Rinaudo M (2003) Biopolymers 723:149

    Article  CAS  Google Scholar 

  32. Kawadkar J, Meenakshi KC, Ram A (2010) DARU J Pharm Sci 183:211

    Google Scholar 

  33. Viseras M-T, Aguzzi C, Cerezo P, Cultrone G, Viseras C (2009) J Microencapsul 263:279

    Article  CAS  Google Scholar 

  34. Agnihotri SM, Vavia PR (2009) Nanomedicine 51:90

    Article  CAS  Google Scholar 

  35. Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY (2010) Carbohyd Polym 794:898

    Article  CAS  Google Scholar 

  36. Bukhari SMH, Khan S, Rehanullah M, Ranjha NM (2015) Int J Polym Sci 2015:15

    Article  CAS  Google Scholar 

  37. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Ind Eng Chem Res 4916:7323

    Article  CAS  Google Scholar 

  38. Goyal P, Kumar V, Sharma P (2007) Carbohyd Polym 692:251

    Article  CAS  Google Scholar 

  39. Ahuja M, Singh S, Kumar A (2013) Int J Biol Macromol 53:114

    Article  CAS  PubMed  Google Scholar 

  40. Piyakulawat P, Praphairaksit N, Chantarasiri N, Muangsin N (2007) AAPS PharmSciTech 84:120

    Article  Google Scholar 

  41. Kashyap M, Archana D, Semwal A, Dutta J, Dutta PK (2016) Chitosan: a promising substrate for regenerative medicine in drug formulation, in chitin and chitosan for regenerative medicine. Springer, New York p, p 261

    Book  Google Scholar 

  42. Tavano L, Pinazo A, Abo-Riya M, Infante MR, Manresa MA, Muzzalupo R, Pérez L (2014) Colloids Surf B 120:160

    Article  CAS  Google Scholar 

  43. Hosny EA, Al-Helw AA-RM (1998) Pharm Acta Helv 725:255

    Article  Google Scholar 

  44. Huang X, Brazel CS (2001) J Control Release 732:121

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the School of Science, Monash University Malaysia for providing the higher degree research financial assistance to the Ph.D. students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janarthanan Pushpamalar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeramachineni, A.K., Sathasivam, T., Paramasivam, R. et al. Synthesis and Characterization of a Novel pH-Sensitive Aluminum Crosslinked Carboxymethyl Tragacanth Beads for Extended and Enteric Drug Delivery. J Polym Environ 27, 1516–1528 (2019). https://doi.org/10.1007/s10924-019-01448-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01448-5

Keywords

Navigation