Skip to main content
Log in

Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) nanocomposite films reinforced with acetylated bacterial cellulose nanoribbons were prepared by solvent casting. Acetylation of bacterial cellulose (BC) was performed by an innovative and sustainable direct solvent-free route catalyzed by citric acid. The effect of derivatization and its extent on the morphological, optical, thermal and mechanical properties of the nanocomposites was analyzed. Data collected from the above studies showed that acetylation of BC nanoribbons clearly improved the nanofibers dispersion in the PLA matrix with respect to unmodified BC, which in turn resulted in increased transparency and mechanical properties of the nanocomposites produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, New York, pp. 527–577

    Google Scholar 

  2. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Compos Sci Technol 66:2776

    Article  CAS  Google Scholar 

  3. Sanchez-García M, Lagaron J (2010) Cellulose 17:987

    Article  CAS  Google Scholar 

  4. Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Eur Polym J 56:77

    Article  CAS  Google Scholar 

  5. Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) J Mater Sci 47:2675

    Article  CAS  Google Scholar 

  6. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Compos Sci Technol 70:1742

    Article  CAS  Google Scholar 

  7. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Compos A 42:1509

    Article  CAS  Google Scholar 

  8. Wang Y, Drzal LT (2012) Appl Mater Interfaces 4:5076

    Google Scholar 

  9. Baheti V, Militky J, Mishra R, Behera B (2013) Text Sci Eng 3:130

    Google Scholar 

  10. Ghasemi S, Behrooz R, Ghasemi I (2017) J Bionanoscience 11:554

    Article  CAS  Google Scholar 

  11. Kim Y, Jung R, Kim HS, Jin H-Y (2009) Curr Appl Phys 9:569

    Google Scholar 

  12. Luddee M, Pivsa-Art S, Sirisansaneeyakul S, Pechyen C (2014) Energy Proc 56:211

    Article  CAS  Google Scholar 

  13. Quero F, Nogi M, Yano H, Abdulsalami K, Holmes S, Sakakini B, Eichhorn J (2010) J Appl Mater Interfaces 2:321

    Article  CAS  Google Scholar 

  14. Panaitescu DM, Frone AN, Chiulan I, Gabor RA, Spataru IC, Casarica A (2017) BioResources 12:662

    CAS  Google Scholar 

  15. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Carbohydr Polym 83:1834

    Article  CAS  Google Scholar 

  16. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Polym Degrad Stab 97:2027

    Article  CAS  Google Scholar 

  17. Fortunati E, Peltzer M, Armentano I, Torre L, Kenny JM (2012) Carbohydr Polym 90:948

    Article  CAS  PubMed  Google Scholar 

  18. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Carbohydr Polym 87:1596

    Article  CAS  Google Scholar 

  19. Robles E, Urrusola I, Labidi J, Serrano L (2015) Ind Crops Prod 71:44

    Article  CAS  Google Scholar 

  20. Spinella S, Lo Re G, Liu B, Dorgan J, Habibi Y, Leclére P, Raquez J-M, Dubois P, Gross RA (2015) Polym J 65:9

    Article  CAS  Google Scholar 

  21. Trifol J, Plackett D, Sillard C, Hassager O, Daugaard AE, Bras J, Szabo P (2016) J Appl Polym Sci 133:43257

    Article  CAS  Google Scholar 

  22. Xu Ch, Lv Q, Wu D, Wang Z (2017) Cellulose 24:2163

    Article  CAS  Google Scholar 

  23. Frone AN, Berlioz S, Chailan J-F, Panaitescu D (2013) Carbohydr Polym 91:377

    Article  CAS  PubMed  Google Scholar 

  24. Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) J Polym Environ 20:991

    Article  CAS  Google Scholar 

  25. Habibi Y, Aouadi S, Raquez J, Dubois P (2013) Cellulose 20:2877

    Article  CAS  Google Scholar 

  26. Song Z, Xiao H, Zhao Y (2014) Carbohydr Polym 111:442

    Article  CAS  PubMed  Google Scholar 

  27. Ambrosio-Martın J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Cellulose 22:1201

    Article  CAS  Google Scholar 

  28. Lee K-Y, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724

    Article  CAS  Google Scholar 

  29. Quero F, Eichhorn J, Nogi M, Lee K-Y, Bismarck A (2012) J Polym Environ 20:916

    Article  CAS  Google Scholar 

  30. Tomé LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini IA (2011) Green Chem 13:419

    Article  CAS  Google Scholar 

  31. Zhang X, Li W, Ye B, Lin Z, Rong J (2013) ‎J Thermoplast Compos 26:346

    Article  CAS  Google Scholar 

  32. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454

    Article  CAS  PubMed  Google Scholar 

  33. Almasi H, Ghanbarzadeh B, Dehghannya J, Entezami AA, Asl AK (2015) Food Packag Shelf Life 5:21

    Article  Google Scholar 

  34. Missoum K, Belgacem MN, Bra J (2013) Materials 6:1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) Biomacromolecules 8:1

    Article  CAS  PubMed  Google Scholar 

  36. Corujo VF, Cerrutti P, Foresti ML, Vázquez A (2016) Production of bacterial nanocellulose from non-conventional fermentation media. In: Puglia D, Fortunati E, Kenny JM (eds) Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier Inc, Amsterdam, pp. 39–59

    Chapter  Google Scholar 

  37. Lee K-Y, Bismarck A (2016) Bacterial nanocellulose as reinforcement for polymer matrices. In: Gama M, Dourado F, Bielecki S (eds) Bacterial nanocellulose from biotechnology to bio-economy. Elsevier, Chenai, pp 109–122

    Chapter  Google Scholar 

  38. Panaitescu DM, Frone AN, Chiulan I (2016) Ind Crops Prod 93:251

    Article  CAS  Google Scholar 

  39. Agustin MB, Nakatsubo F, Yano H (2016) Cellulose 23:451

    Article  CAS  Google Scholar 

  40. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Biomacromolecules 10:2144

    Article  CAS  PubMed  Google Scholar 

  41. Blaker JJ, Walters K-YM, Drouet M, Bismarck A (2014) React Funct Polym 85:185

    Article  CAS  Google Scholar 

  42. Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Cellulose 21:2773

    Article  CAS  Google Scholar 

  43. Suetsugu M, Kotera M, Nishino. MT, (2009) Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide. In: 17th International Conference on Composite Materials, 2009, Edinburgh, UK

  44. Gonçalves S, Padrão J, Rodrigues IP, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Dourado F, Rodrigues LR (2015) Biomacromolecules 16:1341

    Article  CAS  PubMed  Google Scholar 

  45. Hu W, Chen S, Xu Q, Wang H (2011) Carbohydr Polym 83:1575

    Article  CAS  Google Scholar 

  46. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Biomacromolecules 8:1973

    Article  CAS  PubMed  Google Scholar 

  47. Kim D, Nishiyama Y, Kuga S (2002) Cellulose 9:361

    Article  CAS  Google Scholar 

  48. Lee K-Y, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Cellulose 18:595

    Article  CAS  Google Scholar 

  49. Lee K-Y, Bismarck A (2012) Cellulose 19:891

    Article  CAS  Google Scholar 

  50. Tomé LC, Brandão L, Mendes AM, Silvestre AJD, Neto CP, Gandini A, Freire CSR, Marrucho IM (2010) Cellulose 17:1203

    Article  CAS  Google Scholar 

  51. Tomé LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Green Chem 13:2464

    Article  CAS  Google Scholar 

  52. Yamamoto H, Horii F, Hirai A (2006) Cellulose 13:327

    Article  CAS  Google Scholar 

  53. Ávila Ramírez JA, Juan Suriano C, Cerrutti P, Foresti ML (2014) Carbohydr Polym 114:416

    Article  CAS  PubMed  Google Scholar 

  54. Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML, Curr ML (2016) Organocatal 3:161

    Article  CAS  Google Scholar 

  55. Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Carbohydr Polym 153:686

    Article  CAS  PubMed  Google Scholar 

  56. Domínguez de María P (2010) ChemCatChem 2:487

  57. Cerrutti P, Roldán P, Martínez García R, Galvagno MA, Vázquez A, Foresti ML (2016) J Appl Polym Sci 133:43109

    Article  CAS  Google Scholar 

  58. Hestrin S, Schramm M (1954) Biochem J 58:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ilharco LM, Gracia RR, da Silva JL, Ferreira LFV (1997) Langmuir 13:4126

    Article  CAS  Google Scholar 

  60. Segal L, Creely JJ, Martin AE, Conrad CM (1959) ‎Text Res J 29:786

    Article  CAS  Google Scholar 

  61. Turner JF, Riga A, O`Connor A, Zhang J, Collis J (2004) J Therm Anal Calorim 75:257

    Article  CAS  Google Scholar 

  62. Haigler CH. Read, alteration of cellulose assembly in Acetobacter xylinum by fluorescent brightening agents, direct dyes and cellulose derivatives (University of North Carolina at Chapel Hill, 1982)

  63. Hirai A, Tsuji M, Yamamoto H, Horii F (1998) Cellulose 5:201

    Article  CAS  Google Scholar 

  64. Gan K, Nechwatal A, Frankenfeld K, Schlufter K (2012) J Compos Mater 2:97

    Google Scholar 

  65. Dai X, Cao Y, Wang X (2016) RSC Adv 6:71461

    Article  CAS  Google Scholar 

  66. Teixeira EM, de Campos A, Marconcini JM, Bondancia TJ, Wood D, Klamczynski A, Mattoso LHC, Glenn GM (2014) RSC Adv 4:6616

  67. Young RJ, Lovell PA (1991) Introduction to polymers, Chap. 5 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  68. Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Composites B 43:2795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- PIP 11220150100660) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2016-0843—PRESTAMO BID) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura Foresti.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila Ramírez, J.A., Cerrutti, P., Bernal, C. et al. Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route. J Polym Environ 27, 510–520 (2019). https://doi.org/10.1007/s10924-019-01367-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01367-5

Keywords

Navigation