Skip to main content
Log in

Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the last few years there has been a great deal of interest in modifying the methodologies for obtaining polyurethanes using more sustainable strategies. Following this tendency, in the present work, waterborne UV-curable polyurethanes were synthesized using commercially available dimer fatty acid based polyols obtained from renewable resources (Priplast from Croda). The polyols, characterized by proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC) and size exclusion chromatography (GPC–SEC), were semicrystalline and presented very broad melting related with their complex molecular weight distribution. Different polyurethane dispersions were obtained by changing the percentage of the hard segment. Comparing with waterborne polyurethane dispersions obtained from non-renewable resources, the dispersions showed higher particle size even using similar or higher amounts of internal emulsifier. The curing behaviour was characterized by photo-differential scanning calorimetry (Photo-DSC) and the results showed that the conversion and polymerization rate decreased with the hard segment content and temperature. The obtained products displayed good thermal characteristics with phase-separated structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng HN, Gross NA, Smith PB (2015) ACS symposium series. American Chemical Society, Washington DC

    Google Scholar 

  2. Gandini A, Belgacem MN (2002) J Polym Environ 10:105

    Article  CAS  Google Scholar 

  3. Gandini A (2008) Macromolecules 41:9491

    Article  CAS  Google Scholar 

  4. Pomponi F, Moncaster A (2017) J Clean Prod 143:710

    Article  Google Scholar 

  5. Winans K, Kendall A, Deng H (2017) Renew Sustain Energy Rev 68:825

    Article  Google Scholar 

  6. Noreen A, Zia KM, Zuber M, Tabasum S, Zahoor AF (2016) Prog Org Coat 91:25

    Article  CAS  Google Scholar 

  7. Poussard L, Lazko J, Mariage J, Raquez JM, Dubois P (2016) Prog Org Coat 97:175

    Article  CAS  Google Scholar 

  8. Sakulsaknimitr W, Wirasate S, Pipatpanyanugoon K, Atorngitjawat P (2015) J Polym Environ 23:216

    Article  CAS  Google Scholar 

  9. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) React Funct Polym 71:863

    Article  CAS  Google Scholar 

  10. Gurunathan T, Mohanty S, Nayak SK (2015) Prog Org Coat 80:39

    Article  CAS  Google Scholar 

  11. Calvo-Correas T, Santamaria-Echart A, Saralegi A, Martin L, Valea A, Corcuera MA, Eceiza A (2015) Eur Polym J 70:173

    Article  CAS  Google Scholar 

  12. Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) Eur Polym J 87:535

    Article  CAS  Google Scholar 

  13. Rix E, Grau E, Chollet G, Cramail H (2016) Eur Polym J 84:863

    Article  CAS  Google Scholar 

  14. Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Chem Rev 115:12407

    Article  CAS  PubMed  Google Scholar 

  15. Sardon H, Pascual A, Mecerreyes D, Taton D, Cramail H, Hedrick JL (2015) Macromolecules 48:3153

    Article  CAS  Google Scholar 

  16. Sardon H, Irusta L, Fernández-Berridi MJ (2009) Prog Org Coat 66:291

    Article  CAS  Google Scholar 

  17. Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2005) J Appl Polym Sci 98:2514

    Article  CAS  Google Scholar 

  18. Sardon H, Irusta L, Fernández-Berridi MJ, Luna J, Lansalot M, Bourgeat-Lami E (2011) J Appl Polym Sci 120:2054

    Article  CAS  Google Scholar 

  19. Gandini A, Lacerda TM (2015) Prog Polym Sci 48:1

    Article  CAS  Google Scholar 

  20. Lligadas G, Ronda JC, Galiá M, Cádiz V (2013) Mater Today 16:337

    Article  CAS  Google Scholar 

  21. Kathalewar M, Sabnis A, D’Melo D (2014) Prog Org Coat 77:616

    Article  CAS  Google Scholar 

  22. Bueno-Ferrer C, Hablot E, Garrigós MC, Bocchini S, Averous L, Jiménez A (2012) Polym Degrad Stab 97:1964

    Article  CAS  Google Scholar 

  23. Palanisamy A, Rao BS, Mehazabeen S (2011) J Polym Environ 19:698

    Article  CAS  Google Scholar 

  24. Khanderay JC, Gite VV (2017) Green Mater 5:109

    Google Scholar 

  25. Rajput SD, Mahulikar PP, Gite VV (2014) Prog Org Coat 77:38

    Article  CAS  Google Scholar 

  26. Ni B, Yang L, Wang C, Wang L, Finlow DE (2010) J Therm Anal Calorim 100:239

    Article  CAS  Google Scholar 

  27. Bullermann J, Friebel S, Salthammer T, Spohnholz (2013) Prog Org Coat 76:609

    Article  CAS  Google Scholar 

  28. Jiang L, Xu Q, Hu CP (2006) J Nanomater 2006:1

    Article  CAS  Google Scholar 

  29. Liu X, Xu K, Liu H, Cai H, Su J, Fu Z, Guo Y, Chen M (2011) Prog Org Coat 72:612

    Article  CAS  Google Scholar 

  30. Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014) Eur Polym J 52:12

    Article  CAS  Google Scholar 

  31. Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2015) Prog Org Coat 86:134

    Article  CAS  Google Scholar 

  32. Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin JJ (2013) Prog Polym Sci 38:932

    Article  CAS  Google Scholar 

  33. Mishraab V, Mohantya I, Patel MR, Patel KI (2015) Int J Polym Anal Charact 20:504

    Article  CAS  Google Scholar 

  34. Chang CW, Lu KT (2013) Prog Org Coat 76:1024

    Article  CAS  Google Scholar 

  35. Zhang P, Zhang X, Dai J (2011) Polym Mater Sci Eng 10:23

    Google Scholar 

  36. Llorente O, Fernández-Berridi MJ, González A, Irusta L (2016) Prog Org Coat 99:437

    Article  CAS  Google Scholar 

  37. Jiang L, Xu Q, Hu CP (2006) J Nanomater 14906:1

    Article  CAS  Google Scholar 

  38. Santiago A, Martin L, Iruin JJ, Fernández-Berridi MJ, González A, Irusta L (2014) Prog Org Coat 77:798

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of the Basque Country UPV/EHU (UFI 11/56), the Diputación Foral de Gipuzkoa (OF218) and, the Basque Government (Ayuda a grupos de investigación del sistema universitario vasco IT618-13) for the funding received to develop this work. Technical and Human support provided by Macrobehavior-Mesostructure-Nanotechnology and NMR SGiker services of UPV/EHU is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Irusta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etxaniz, I., Llorente, O., Aizpurua, J. et al. Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters. J Polym Environ 27, 189–197 (2019). https://doi.org/10.1007/s10924-018-1334-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1334-0

Keywords

Navigation