Skip to main content
Log in

Synthesis, Characterization and Physicomechanical Properties of Novel Water-based Biodegradable Polyurethane Dispersion

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Novel water-based biodegradable polyurethane dispersions with an aim to develop environmentally friendly materials, including medicine, various industries, have been prepared in this study. Biodegradable ionic polyurethanes (IPU) were synthesized based on polyols from renewable resources, such as castor oil (CO), in the presence of a polyester polyol and polyethylene glycol (PEG) with hydrophilic property and 1,6-hexamethylene diisocyanate. 1,4-Butanediol and dibutyltin dilaurate, were used as a chain extender and catalyst, respectively. The comprehensive investigations of the structure and properties of five types of synthesized polyurethanes demonstrated biodegradability relationship of these polyurethanes with their structure and composition. In this research effects of different types and content of polyols on biodegradability and physico mechanical properties of prepared PUDs were investigated. The structure, properties and physico mechanical and application behavior of mentioned materials were characterized by 1H NMR, FTIR spectroscopy, thermogravimetric analysis (TG/DTG) and dynamic mechanical thermal analysis (DMTA). The adhesion properties were measured by pull off test as well. Particle size was measured by dynamic light scattering (DLS) methods. The biodegradability of prepared polyurethane dispersions was confirmed by water uptake, hydrolytic and enzymatic degradation in phosphate buffer saline (PBS) with lipase enzyme in PBS. Results showed that by the incorporation of natural components into the polymer chain, adjusting of hydrophilic and hydrolytic liability properties of soft segments and especial relevant designs, useful polyurethane can be synthesized with desirable property of biodegradability and dispersion stability. Except for one sample, other samples were decomposed totally in enzymatic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S., Lv, H., Zhang, H., Wang, B., and Xu, Y., J. Appl. Polym. Sci., 2006, vol. 101, pp. 597–602.

    Article  CAS  Google Scholar 

  2. Barni, A. and Levi, M., J. Appl. Polym. Sci., 2003, vol. 88, pp. 816–823.

    Article  CAS  Google Scholar 

  3. Kim, B.K. and Lee, Y. M., J. Appl Polym Sci., 1994, vol. 54, pp. 1809–1815.

    Article  CAS  Google Scholar 

  4. Kim, C. K. and Kim, B. K., J. Appl. Polym. Sci., 1991, vol. 43, pp. 2295–2301.

    Article  CAS  Google Scholar 

  5. John, Y. K., Cheong, I.W., and Kim, J. H., J. Colloids & Surfaces A: Physicochem. & Eng. Aspects, 2001, vol. 179, pp. 71–78.

    Article  Google Scholar 

  6. Szycher, M., Handbook of Polyurethane, New York: CRC Press LLC, 1999.

    Google Scholar 

  7. Poussard, L., Lazko, J., Mariage, J., et al., Prog. Org. Coat, 2016, vol. 97, pp. 173–183.

    Google Scholar 

  8. Kwak, Y.S., Park, S.W., Lee, Y.H., and Lee, K.H., J. Appl. Polym. Sci., 2003, vol. 89, pp. 123–129.

    Article  CAS  Google Scholar 

  9. Noreen, A., Zia, K.M, Zuber, M., et al., A review. Prog. Org. Coat., 2016, vol. 91, pp. 25–32.

    Article  CAS  Google Scholar 

  10. Liu, K., Miao, S., Su, Z., et al., Eur. J. Lipid. Sci. Technol., 2016, vol. 118, pp. 1512–1520.

    Article  CAS  Google Scholar 

  11. US Patent 6559225 B1, 2003.

  12. Howarth, G.A., J. Surf. Coat. Intl B: Coat. Trans., 2003, vol. 86, pp. 111–118.

    Article  CAS  Google Scholar 

  13. Negim, S.M., Bahruddin, S., Mahyuddin, R., and Idiris, M.S., J. Appl. Polym. Sci., 2011, vol. 121, pp. 8–13.

    Article  CAS  Google Scholar 

  14. Li, C.Y., Chiu, W.Y., and Don, T.M., J. Appl. Polym. Sci., 2005, vol. 43, pp. 4870–4881.

    Article  CAS  Google Scholar 

  15. Nanda, A.K., Wicks, D.A., Madbouly, S.A., and Otaigbe, J.U., J. Appl. Polym. Sci., 2005, vol. 98, pp. 2514–2520.

    Article  CAS  Google Scholar 

  16. Nanda, A. K., and Wicks, D.A., J. Aqila., 2006, vol. 47, pp. 1805.

    CAS  Google Scholar 

  17. Jang, J.Y., John, Y. K., Cheong, I.W., and Kim, J.H., Coll. Surf. A: Physicochemical and Eng. Aspects, 2002, vol. 196, pp. 135–143.

    Article  CAS  Google Scholar 

  18. Biodegradable Polymer Blends and Composites from Renewable Resources, Yu, L. and Chen, L., Eds., John Wiley & Sons, 2008.

    Google Scholar 

  19. Calpena, E., Aís, F., Palau, A.M.T., and Barceló, C.O., J. Material: Design & Application, 2014, vol. 228, pp. 125–136.

    Google Scholar 

  20. Qu, W.Q., Xia, Y., Jiang, Y.R., et al., Chin. Chem. Lett., 2016, vol. 27, 135–138

    Article  CAS  Google Scholar 

  21. Guelcher, S.A., Tissue. Eng. Part B. Rev., 2008, vol. 14, pp. 3–17.

    Article  CAS  PubMed  Google Scholar 

  22. Lu, Y.S., and Larock, R.C., Chem. Sus. Chem., 2009, vol. 2, pp. 136–147.

    Article  CAS  Google Scholar 

  23. Hamid, H., Handbook of Polymer Degradation, 2nd ed, Switzerland, 2000.

    Google Scholar 

  24. Gogoi, S. B., and Karak, N., ACS. Sustainable. Chem. Eng., 2014, vol. 2 no. 12, pp. 2730–2738.

    Article  CAS  Google Scholar 

  25. Yeganeh, H., and Talemi, P. H., J. Polym. Degrad. Stab., 2007, vol. 92, pp. 480–489.

    Article  CAS  Google Scholar 

  26. Mondal, S., and Martin, D., J. Polym. Degrad. Stab., 2012, vol. 97, pp. 1553–1561.

    Article  CAS  Google Scholar 

  27. LaShanda, T., Korley, J., Pate, B.D., et al., Polymer., 2006, vol. 47, pp. 3073–3082.

    Article  CAS  Google Scholar 

  28. Yeganeh, H., Lakouraj, M. M., and Jamshidi, S., Polym. Sci Part A: Polym. Chem., 2005, vol. 43, pp. 2985–2996.

    Article  CAS  Google Scholar 

  29. Corcuera, M.A., Rueda, L., Arlas, B.F., et al., Polym. Degrad. Stab., 2010, vol. 95, pp. 2175.

    Article  CAS  Google Scholar 

  30. Fu, C., Zheng, Z., Yang, Z., et al., Prog. Org. Coat., 2014, vol. 77, pp. 53–60.

    Article  CAS  Google Scholar 

  31. Oprea, S., Polym. Deg rad. Stab., 2010, vol. 95, pp. 2396–2404.

    Article  CAS  Google Scholar 

  32. Petro Vic, Z.S., Xu, Y., Milic, J., et al., J. Polym. Environ., 2010, vol. 18, pp. 94–97.

    Article  CAS  Google Scholar 

  33. Shogren, R. L., Petrovic, Z., Lio, Z., and Erhan, S.Z., J. Polym. Environ., 2004, vol. 12, pp. 65–81.

    Article  Google Scholar 

  34. A. Göpferich, Biomaterials, 1996, vol. 17, pp. 103–114.

    Article  PubMed  Google Scholar 

  35. Park, T.G., Cohen, S., and Langer, R., Macromolecules, 1992, vol. 25, pp. 116–122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbarfar, B., Taghvaei Ganjali, S., Alavi Nikje, M.M. et al. Synthesis, Characterization and Physicomechanical Properties of Novel Water-based Biodegradable Polyurethane Dispersion. Russ J Appl Chem 91, 1198–1208 (2018). https://doi.org/10.1134/S1070427218070200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218070200

Keywords

Navigation