Skip to main content
Log in

Crystallization Behavior and Morphology of Hexadecylamine-Modified Layered Zinc Phenylphosphonate and Poly(Butylene Succinate-co-Adipate) Composites with Controllable Biodegradation Rates

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hexadecylamine-modified zinc phenylphosphonate (m-PPZn) and biodegradable poly(butylene succinate-co-adipate) (PBSA) were melt mixed using a single-screw extruder. Experimental results of wide-angle X-ray diffraction (WAXD) and transmission electron microscopy revealed that the stacking layers of the m-PPZn were partially intercalated and partially exfoliated into the PBSA polymer matrix. The biodegradation rates of PBSA using lipase from Pseudomonas sp. increase as the contents of m-PPZn increase. The degree of crystallinity the lamellar thickness determined using WAXD and small-angle X-ray scattering data decrease as the loadings of m-PPZn increase. It is necessary to point out that the changes of degradation rate, the degree of crystallinity, and the lamellar thickness are almost linearly proportional to the loading of m-PPZn. This finding of composite materials with controllable degradation rate would provide an important information for the manufacturing PBSA nanocomposites used in biodegradable mulching films for agricultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ojijo V, Ray SS (2014) Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Prog Mater Sci 62:1

    Article  CAS  Google Scholar 

  2. Chen YA, Hang YT, Wu TM (2015) Polymorphism and spherulite morphology of poly(1,4-butylene adipate)/organically-modified layered double hydroxide nanocomposites. J Appl Polym Sci 132:42526

    Google Scholar 

  3. Ray SS, Bousmina M, Okamoto K (2005) Structure and properties of nanocomposites based on poly (butylene succinate-co-adipate) and organically modified montmorillonite. Macro Mater Eng 290:759

    Article  CAS  Google Scholar 

  4. Qi Z, Ye H, Xu J, Chen J, Guo B (2013) Improved the thermal and mechanical properties of poly(butylene succinate-co-butylene adipate) by forming nanocomposites with attapulgite. Colloids Surf A Physicochem Eng Asp 421:109

    Article  CAS  Google Scholar 

  5. Lichocik M, Owczarek M, Miros P, Guzińska K, Gutowska A, Ciechańska D, Krucińska I, Siwek P (2012) Impact of PBSA (Bionolle) biodegradation products on the soil microbiological structure. Fibers Text East Eur 20:179

    CAS  Google Scholar 

  6. Bandyopadhyay J, Al-Thabaiti SA, Ray SS, Basahel SN, Mokhtar M (2014) Unique cold-crystallization behavior and kinetics of biodegradable poly[(butylene succinate)-co adipate] nanocomposites: a high speed differential scanning calorimetry study. Macromol Mater Eng 299:939

    Article  CAS  Google Scholar 

  7. Ojijo V, Malwela T, Ray SS, Sadiku R (2012) Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay. Polymer 53:505

    Article  CAS  Google Scholar 

  8. Ojijo V, Ray SS, Sadiku R (2012) Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces 4:2395

    Article  CAS  PubMed  Google Scholar 

  9. Chen YA, Tsai GS, Chen EC, Wu TM (2016) Crystallization behaviors and microstructures of poly(butylene succinate-co-adipate)/modified layered double hydroxide nanocomposites. J Mater Sci 51:4021

    Article  CAS  Google Scholar 

  10. Chiu FC (2016) Fabrication and characterization of biodegradable poly(butylene succinate-co-adipate) nanocomposites with halloysite nanotube and organomontmorillonite as nanofiller. Polym Test 54:1

    Article  CAS  Google Scholar 

  11. Chiu FC (2017) Halloysite nanotube- and organoclay-filled biodegradable poly(butylene succinate-co-adipate)/maleated polyethylene blend-based nanocomposites with enhanced rigidity. Compos Part B Eng 110:193

    Article  CAS  Google Scholar 

  12. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402

    Article  CAS  PubMed  Google Scholar 

  13. Xu T, Wang Y, He D, Xu Y, Li Q, Shen C (2014) Nucleation effect of layered metal phosphonate on crystallization of isotactic polypropylene. Polym Test 34:131

    Article  CAS  Google Scholar 

  14. Wu N, Wang H (2013) Effect of zinc phenylphosphonate on the crystallization behavior of poly (l-lactide). J Appl Polym Sci 130:2744

    Article  CAS  Google Scholar 

  15. Chen YA, Chen EC, Wu TM (2016) Lamellae evolution of stereocomplex-type poly(lactic acid)/organically-modified layered zinc phenylphosphonate nanocomposites induced by isothermal crystallization. Materials 9:159

    Article  CAS  PubMed Central  Google Scholar 

  16. Chen YA, Chen EC, Wu TM (2015) Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly (lactic acid) nanocomposites with highly enhanced mechanical properties and degradability. J Mater Sci 50:7770

    Article  CAS  Google Scholar 

  17. Chen YA, Kuo DL, Chen EC, Wu TM (2017) Enhanced enzymatic degradation in nanocomposites of various organically-modified layered zinc phenylphosphonate and poly(butylene succinate-co-adipate). J Polym Res 24:212

    Article  CAS  Google Scholar 

  18. Poojary DM, Clearfield A (1995) Coordinative intercalation of alkylamines into layered zinc phenylphosphonate. Crystal structures from X-ray powder diffraction data. J Am Chem Soc 117:11278

    Article  CAS  Google Scholar 

  19. Zhang Y, Scott KJ, Clearfield A (1995) Intercalation of alkylamines into dehydrated and hydrated phenylphosphonates. J Mater Chem 5:315

    Article  CAS  Google Scholar 

  20. Chen YA, Tsai GS, Chen EC, Wu TM (2017) Thermal degradation behaviors and biodegradability of novel nanocomposites based on various poly[(butylene succinate)-co-adipate] and modified layered double hydroxides. J Taiwan Inst Chem Eng 77:263

    Article  CAS  Google Scholar 

  21. Gilman JW, Morgan AB (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87:1329

    Article  CAS  Google Scholar 

  22. Strobl G, Schneider M (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed 18:1343

    Article  CAS  Google Scholar 

  23. Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N (2003) SAXS and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 36:749

    Article  CAS  Google Scholar 

  24. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177

    Article  CAS  Google Scholar 

  25. Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212

    Article  CAS  Google Scholar 

  26. Numata K, Finne-Wistrand A, Albertsson AC, Doi Y, Abe H (2008) Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates. Biomacromolecules 9:2180

    Article  CAS  PubMed  Google Scholar 

  27. Ando Y, Yoshikawa K, Yoshikawa T, Nishioka M, Ishioka R, Yakabe Y (1998) Biodegradability of poly(tetramethylene succinate-co-tetramethylene adipate): I. Enzymatic hydrolysis. Polym Degrad Stab 61:129

    Article  CAS  Google Scholar 

  28. Ciou CY, Li SY, Wu TM (2014) Morphology and degradation behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/layered double hydroxides composites. Eur Polym J 59:136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology (MOST) under Grant MOST 104-2212-E-005-089-MY2 and the Ministry of Education under the project of Innovation and Development Center of Sustainable Agriculture (IDCSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, DL., Wu, TM. Crystallization Behavior and Morphology of Hexadecylamine-Modified Layered Zinc Phenylphosphonate and Poly(Butylene Succinate-co-Adipate) Composites with Controllable Biodegradation Rates. J Polym Environ 27, 10–18 (2019). https://doi.org/10.1007/s10924-018-1319-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1319-z

Keywords

Navigation