Skip to main content
Log in

Characterization of Environmentally Friendly Polymers by Inverse Gas Chromatography: II, Poly(3-hydroxybutyric acid)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The surface thermodynamics of poly(3-hydroxybutyric acid) (PHBA) as a biodegradable polymer, was characterized using the inverse gas chromatography method. Gel permeation chromatography and differential scanning calorimetry method was also used to measure the molar mass, polydispersity, glass and melting temperatures. Twenty-seven solutes (solvents) with different families having a variety of chemical natures were used to measure the strength of the interaction forces of these solutes with PHBA. All these solutes showed an endothermic interactions which varied from one family to another. All families showed a chemical dependence on the interaction coefficients, a successful correction was used to eliminate the chemical dependence which resulted in exothermic interactions. Retention diagrams of all solvents showed no crystallinity occurred at the temperature range used. The molar heat of sorption of all solutes was measured from the retention diagrams ranged from − 19.41 for acetone to − 90.38 kJ/mol for cyclohexane. The dispersive component of the surface energy of PHBA was measured using alkanes which ranged from 24.42 mJ/m2 at 80 °C to 13.94 mJ/m2 at 120 °C. The decrease in surface energy attributed to the weakening of the surface at a higher temperature due to the melt and expansion of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Ghamdi A, Melibari M, Al-Saigh ZY (2005) J Polym Environ 13:319

    Article  CAS  Google Scholar 

  2. Batz H-G, Sluka P, Jendrossek D, Steinbuechel A (1995) Eur Pat Appl EP 679412(A1):1102

    Google Scholar 

  3. Jacquel N, Lo CW, Wu HS, Wang SS (2007) AlChE J 53:2704

    Article  CAS  Google Scholar 

  4. Senior PJ, Dawes EA (1973) Biochem J 134:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dunlop WF, Robards AW (1973) J Bacteriol 114:1271

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ellar D, Lundgren DG, Okamma K, Marchessault RH (1968) J Mol Biol 35:489

    Article  CAS  PubMed  Google Scholar 

  7. Lundgren DG, Pfister RM, Merrick JM (1964) J Gen Microbiol 34:441

    Article  CAS  PubMed  Google Scholar 

  8. Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Appl Microbiol Biotechnol 39:443

    Article  Google Scholar 

  9. Kawaguchi Y, Doi Y (1990) FEMS Microbiol Lett 79:151

    Article  Google Scholar 

  10. Fukui T, Kato M, Matsusaki H, Iwata T, Doi Y (1998) FEMS Microbiol Lett 164:219

    Article  CAS  Google Scholar 

  11. Stockdale H, Ribbons DW, Dawes EA (1968) J Bacteriol 95:1798

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Soma P, Amal KP (2002) Curr Sci 83:25

    Google Scholar 

  13. Meyers R (ed) (2000) Inverse gas chromatography in analysis of polymers and rubbers. In: Encyclopedia of analytical chemistry: instrumentation and applications, vol 9. Wiley, Chichester, pp 7759–7792

  14. Al-Saigh ZY (1996) Polym Int 40: 25

    Article  CAS  Google Scholar 

  15. Al-Saigh ZY (1999) Polymer 40:3479

    Article  CAS  Google Scholar 

  16. Chehimi MM, Pigois-Landureau E, Delamar MM (1992) J Chim Phys 89:1173

    Article  CAS  Google Scholar 

  17. Landureau E, Chehimi MM (1993) J Appl Polym Sci 49:183

    Article  Google Scholar 

  18. Chehimi MM, Abel ML, Perruchot C, Delamar M, Lascelles SF, Armes SP (1999) Synth Metals 104:51

    Article  CAS  Google Scholar 

  19. Papirer E, Eckhardt A, Muller F, Yvon J (1990) J Mater Sci 25:5109

    Article  CAS  Google Scholar 

  20. Papirer E, Ligner G, Vidal A, Balard H, Mauss F (1990) In: Leyden E, Collins WT (eds) Chemically modified oxide surfaces. Gordon and Breach, New York, p 361

    Google Scholar 

  21. Papirer E, Balard H, Vidal A (1988) Eur Polym J 24:783

    Article  CAS  Google Scholar 

  22. Papirer E, Roland P, Nardin M, Balard H (1986) J Colloid Interface Sci 113:62

    Article  CAS  Google Scholar 

  23. Al-Saigh ZY, Chen P (1991) Macromolecules 24:3788

    Article  CAS  Google Scholar 

  24. Al-Gahmdi A, Al-Saigh ZY (2000) J Polym Sci B B38:1155

    Article  Google Scholar 

  25. Al-Saigh ZY, Munk P (1984) Macromolecules 17:803

    Article  CAS  Google Scholar 

  26. Al-Saigh ZY (1997) Int J Polym Charact Anal 3:249

    Article  CAS  Google Scholar 

  27. Papirer E, Brendle E, Ballard H, Vergelati C (2000) J Adhesion Sci Technol 14:321

    Article  CAS  Google Scholar 

  28. Tshabalala MA, Denes AR, Williams RS, (1999) J Appl Polym Sci 73:399

    Article  CAS  Google Scholar 

  29. Tshabalala MA (1997) J Appl Polym Sci 65:1013

    Article  CAS  Google Scholar 

  30. Boutboul A, Lenfant F, Giampaoli P, Feigenbaum A, Ducruet V (2002) J Chromatogr A 969:9

    Article  CAS  PubMed  Google Scholar 

  31. Munk P (1991) Modern methods of polymer characterization. In: Barth H, Mays JW (eds) Chemical analysis: a series of monographs on analytical chemistry and its applications, Winefordner, J. D. series, 113. Wiley, Hoboken, pp 151–200

    Google Scholar 

  32. Fowkes FM (1964) Ind Eng Chem 561:40

    Article  Google Scholar 

  33. Fowkes FM (1967) Ind Eng Chem Prod Res Dev 56:40

    Article  Google Scholar 

  34. Card TW, Al-Saigh ZY, Munk P (1984) J Chromatogr 301:261

    Article  CAS  Google Scholar 

  35. Munk P, Hattam P, Abdual-Azim A, Du Q (1990) Makromol Chem Macromol Symp 38:205

    Article  CAS  Google Scholar 

  36. Prolongo MG, Masegosa RM, Horta A (1989) Macromolecules 22:4346

    Article  CAS  Google Scholar 

  37. Shi ZH, Schreiber HP (1991) Macromolecules 24:3522

    Article  CAS  Google Scholar 

  38. Vanlautem N, Gilain J (1982) US Patent 4310684

  39. Terada M, Marchessault RH (1999) Int J Biol Macromol 25:207

    Article  CAS  PubMed  Google Scholar 

  40. Hildebrand J, Scott R (1949) Solubility of non-electrolytes, 3rd edn. Reinhold, New York

    Google Scholar 

  41. Hansen CM (1967) J Paint Technol 39:511

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeki Y. Al-Saigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosher, H., Al-Saigh, Z.Y. Characterization of Environmentally Friendly Polymers by Inverse Gas Chromatography: II, Poly(3-hydroxybutyric acid). J Polym Environ 27, 74–83 (2019). https://doi.org/10.1007/s10924-018-1317-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1317-1

Keywords

Navigation