Skip to main content

Advertisement

Log in

Effect of Maleated PLA on the Properties of Rotomolded PLA-Agave Fiber Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, agave fibers were surface treated using maleated PLA (MAPLA) in order to increase the fiber content (from 10 up to 40% wt.) in polylactic acid (PLA) biocomposites produced by rotational molding and to study the effect of the agave fiber and its treatment on the physical, mechanical and thermal properties of the biocomposites. This chemical modification between agave fibers and MAPLA was evaluated by FTIR spectroscopy. In general the results indicate that MAPLA surface treatment produces a more homogeneous morphology with lower interfacial gaps and overall porosity, especially at higher agave contents. This improved compatibility promoted better stress transfer leading to increased mechanical properties. For example, the tensile strength and modulus of treated fiber composites increased by up to 68% (from 25 to 41 MPa) and 32% (from 1.30 to 1.74 GPa) respectively, in comparison with untreated fiber composites. Fiber surface treatment also decreases hydrophilicity, lowering water absorption and diffusion coefficient. From thermo–mechanical analyses, the damping behavior of the biocomposites decreased with MAPLA treatment since a stronger interface is able to sustain higher stresses and dissipates less energy. Finally, the thermal stability was also improved as a result of better interfacial chemical bonding leading to a 12 °C increase in thermal stability (from 254 to 266 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kwon HJ, Sunthornvarabhas J, Park JW, Lee JH, Kim HJ, Piyachomkwan K, Sriroth K, Cho D (2014) Compos Part B 56:232

    Article  CAS  Google Scholar 

  2. Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244

    Article  CAS  PubMed  Google Scholar 

  3. Baheti V, Militky J, Marsalkova M (2013) Polym Compos 34:2133

    Article  CAS  Google Scholar 

  4. Awal A, Rana M, Sain M (2015) Mech Mater 80:87

    Article  Google Scholar 

  5. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  PubMed  Google Scholar 

  6. Pérez-Fonseca AA, Robledo-Ortíz JR, González-Núñez R, Rodrigue D (2016) J Appl Polym Sci 133:43750

    Article  CAS  Google Scholar 

  7. Greco A, Maffezzoli A (2016) Polym Degrad Stab 132:213

    Article  CAS  Google Scholar 

  8. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Thomas N (2011) Adv Polym Technol 2:67

    Article  CAS  Google Scholar 

  10. Hinchcliffe SA, Hess KM, Srubar WV (2016) Compos Part B 95:346

    Article  CAS  Google Scholar 

  11. Harmaen AS, Khalina AK, Azowa I, Hassan MA, Tarmian A, Jawaid M (2015) Polym Compos 36:576

    Article  CAS  Google Scholar 

  12. Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Ind Crop Prod 52:481

    Article  CAS  Google Scholar 

  13. Avella M, Martuscelli E, Raimo M (2000) J Mater Sci 35:523

    Article  CAS  Google Scholar 

  14. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Compos Sci Tech 68:424

    Article  CAS  Google Scholar 

  15. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Compos Part A 41:499

    Article  CAS  Google Scholar 

  16. Luo H, Zhang C, Xiong G, Wan Y (2016) Polym Compos 37:3499

    Article  CAS  Google Scholar 

  17. Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) Compos Part A 84:186

    Article  CAS  Google Scholar 

  18. Cisneros-López EO, Pérez-Fonseca AA, Fuentes-Talavera FJ, Anzaldo J, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2016) Polym Eng Sci 56:856

    Article  CAS  Google Scholar 

  19. Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González Núñez R, Rodrigue D, Robledo-Ortíz JR (2017) Compos Interface 24:35

    Article  CAS  Google Scholar 

  20. Gunning MA, Geever LM, Killion JA, Lyons JG, Higginbotham CL (2014) Polym Compos 35:1792

    Article  CAS  Google Scholar 

  21. Yu T, Jiang N, Li Y (2014) Compos Part A 64:139

    Article  CAS  Google Scholar 

  22. Arias A, Heuzey MC, Huneault MA (2013) Cellulose 20:439

    Article  CAS  Google Scholar 

  23. Nyambo C, Mohanty AK, Misra M (2011) Macromol Mater Eng 296:710

    Article  CAS  Google Scholar 

  24. Lv S, Gu J, Tan H, Zhang Y (2016) J Appl Polym Sci 133:43295

    Google Scholar 

  25. Jiang A, Xu X, Wu H (2016) Polym Compos 37:802

    Article  CAS  Google Scholar 

  26. Greco A, Maffezzoli M (2015) Adv Polym Technol 34:21505

    Article  CAS  Google Scholar 

  27. Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z, Gou J, Hui D, Zhou Z (2014) Compos Part B 62:191

    Article  CAS  Google Scholar 

  28. Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) Biomass Bioenerg 66:176

    Article  CAS  Google Scholar 

  29. Martynenko A (2014) Dry Technol 32:1319

    Article  Google Scholar 

  30. Xu H, Zhou J, Dong Q, Tan Y (2017) Mater Des 124:108

    Article  Google Scholar 

  31. Carter HG, Kibler KG (1978) J Compos Mater 12:118

    Article  Google Scholar 

  32. Orozco VH, Brostow W, Chonkaew W, López BL (2009) Macromol Symp 277:69

    Article  CAS  Google Scholar 

  33. Verdaguer A, Rodrigue D (2014) Effect of surface treatment on the mechanical properties of wood-plastics composites produced by dry-blending. In: 72th annual technical conference & exhibition, Society of Plastics Engineers, Las Vegas, NV, USA

  34. Korotkova E, Pranovich A, Wärnå J, Salmi T, Murzin DY, Willför S (2015) Green Chem 17:5058

    Article  CAS  Google Scholar 

  35. Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) Compos Part B 43:2827

    Article  CAS  Google Scholar 

  36. Jandas PJ, Mohanty S, Nayak SK (2011) Polym Compos 32:1689

    Article  CAS  Google Scholar 

  37. Csikós Á, Faludi G, Domján A, Renner K, Móczó J, Pukánszky B (2015) Eur Polym J 68:592

    Article  CAS  Google Scholar 

  38. Raymond A, Rodrigue D (2014) Effect of surface treatment on the properties of wood-plastics composites produced by rotomolding. In: 72th annual technical conference & exhibition, Society of Plastics Engineers, Las Vegas, NV, USA

  39. Mahfoudh A, Cloutier A, Rodrigue D (2013) Polym Compos 34:510

    Article  CAS  Google Scholar 

  40. Kaynak C, Meyva Y (2014) Polym Adv Technol 25:1622

    Article  CAS  Google Scholar 

  41. Teymoorzadeh H, Rodrigue D (2015) J Bio Mater Bio 9:1

    Article  CAS  Google Scholar 

  42. Kaymakci A, Ayrılmis N, Gülec T (2013) Bioresources 8:592

    Google Scholar 

  43. Bax B, Müssig J (2008) Compos Sci Technol 68:1601

    Article  CAS  Google Scholar 

  44. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Compos Part A 40:404

    Article  CAS  Google Scholar 

  45. Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2012) Prog Polym Sci 37:1425

    Article  CAS  Google Scholar 

  46. Rajesh G, Prasad AR, Gupta A (2015) J Reinf Plast Compos 34:951

    Article  CAS  Google Scholar 

  47. Orue A, Eceiza A, Peña-Rodriguez C, Arbelaiz A (2016) Materials 9:400

    Article  CAS  PubMed Central  Google Scholar 

  48. Arbelaiz A, Fernandez B, Ramos JA, Regegi A, Llano-Ponte R, Mondragon I (2005) Compos Sci Technol 65:1582

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Secretaría de Educación Pública PRODEP-NPTC Mexican program (#195010). One of the authors (M.E. González-López) thanks the Mexican National Council for Science and Technology (CONACyT) for a scholarship (#587384) and the Academic Secretariat of the University of Guadalajara (CUCEI) for the complementary financial support for a research internship at Université Laval. The technical support of D. Chimeni and Y. Giroux is also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge R. Robledo-Ortíz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-López, M.E., Pérez-Fonseca, A.A., Cisneros-López, E.O. et al. Effect of Maleated PLA on the Properties of Rotomolded PLA-Agave Fiber Biocomposites. J Polym Environ 27, 61–73 (2019). https://doi.org/10.1007/s10924-018-1308-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1308-2

Keywords

Navigation