Skip to main content
Log in

Accelerated Weathering of Polylactic Acid/Agave Fiber Biocomposites and the Effect of Fiber–Matrix Adhesion

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, the accelerated weathering of PLA and its biocomposites produced with agro-industrial waste agave fibers was evaluated to better understand the lifetime of these materials. The effects of the fiber content, the fiber treatment with glycidyl methacrylate grafted PLA, and the fiber/matrix adhesion on the degradation of the materials were also analyzed. The biocomposites were prepared by dry blending, followed by compression molding using untreated and chemically modified agave fibers. The chemical treatment promoted a better fiber–matrix adhesion and lower fiber pull-outs resulting in high tensile and flexural strength values (similar to the neat PLA even with 40 wt% of fiber). Once the modification of the fiber–matrix was observed to be effective, the effect of accelerated weathering over compatibilized and uncompatibilized biocomposites was evaluated. The results showed that after accelerated weathering, the crystallinity of the biocomposites increased significantly, causing that the impact strength remains constant and, in some cases, even improved. At the same time, tensile and flexural properties were noticeably decreased. Nevertheless, the treated fibers which have better adhesion to the matrix led a better resistance to weathering degradation, which is confirmed by higher dimensional stability and lower decreases in tensile and flexural properties than biocomposites with untreated fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ligot S, Benali S, Ramy-Ratiarison R, Murariu M, Snyders R, Dubois P (2015) Mater Sci Eng Adv Res 1:20. https://doi.org/10.24218/msear.2015.04

    Article  Google Scholar 

  2. Awal A, Rana M, Sain M (2015) Mech Mater 80:87. https://doi.org/10.1016/j.mechmat.2014.09.009

    Article  Google Scholar 

  3. Bordes P, Pollet E, Avérous L (2009) Prog Polym Sci 34:125. https://doi.org/10.1016/j.progpolymsci.2008.10.002

    Article  CAS  Google Scholar 

  4. Farah S, Anderson DG, Langer R (2016) Adv Drug Deliv Rev 107:367. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  5. Murariu M, Dubois P (2016) Adv Drug Deliv Rev 107:17. https://doi.org/10.1016/j.addr.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Way C, Wu DY, Cram D, Dean K, Palombo E (2013) J Polym Environ 21:54. https://doi.org/10.1007/s10924-012-0462-1

    Article  CAS  Google Scholar 

  7. Mukherjee T, Kao N (2011) J Polym Environ 19:714. https://doi.org/10.1007/s10924-011-0320-6

    Article  CAS  Google Scholar 

  8. Torres-Tello EV, Robledo-Ortíz JR, González-García Y, Pérez-Fonseca AA, Jasso-Gastinel CF, Mendizábal E (2017) Ind Crops Prod 99:117. https://doi.org/10.1016/j.indcrop.2017.01.035

    Article  CAS  Google Scholar 

  9. Kovacevic Z, Bischof S, Fan M (2015) Composites Part B Eng 78:122. https://doi.org/10.1016/j.compositesb.2015.02.034

    Article  CAS  Google Scholar 

  10. Consejo Regulador del Tequila (2020) https://www.crt.org.mx/images/Documentos/EstrategiaSustentabilidad.pdf. Accessed Sept 2020

  11. Cisneros-López EO, Pérez-Fonseca AA, González-García Y, Ramírez-Arreola DE, González-Nuñez R, Rodrigue D, Robledo-Ortíz JR (2018) Adv Polym Technol 37:2528. https://doi.org/10.1002/adv.21928

    Article  CAS  Google Scholar 

  12. Pérez-Fonseca AA, Robledo-Ortíz JR, Moscoso-Sánchez FJ, Fuentes-Talavera FJ, Rodrigue D, González-Núñez R (2015) J Polym Environ 23:126. https://doi.org/10.1007/s10924-014-0706-3

    Article  CAS  Google Scholar 

  13. Cisneros-López EO, Pérez-Fonseca AA, Fuentes-Talavera FJ, ANzaldo J, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2016) Polym Eng Sci 56:856. https://doi.org/10.1002/pen.24314

    Article  CAS  Google Scholar 

  14. Pérez-Fonseca AA, Robledo-Ortíz JR, González-Núñez R, Rodrigue D (2016) J Appl Polym Sci 133:43750. https://doi.org/10.1002/app.43750

    Article  CAS  Google Scholar 

  15. González-López ME, Robledo-Ortíz JR, Manríquez-González R, Silva-Guzmán JA, Pérez-Fonseca AA (2018) Compos Interfaces 25:515. https://doi.org/10.1080/09276440.2018.1439622

    Article  CAS  Google Scholar 

  16. González-López ME, Pérez-Fonseca AA, Cisneros-López EO, Manríquez-González R, Ramírez-Arreola DE, Rodrigue D, Robledo-Ortíz JR (2019) J Polym Envrion 27:61. https://doi.org/10.1007/s10924-018-1308-2

    Article  CAS  Google Scholar 

  17. Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2017) Compos Interfaces 24:35. https://doi.org/10.1080/09276440.2016.1184556

    Article  CAS  Google Scholar 

  18. Deka BK, Maji TK (2011) Composites Part A Appl Sci Manuf 42:2117. https://doi.org/10.1016/j.compositesa.2011.09.023

    Article  CAS  Google Scholar 

  19. Zhang H (2014) Mater Des 59:130. https://doi.org/10.1016/j.matdes.2014.02.048

    Article  CAS  Google Scholar 

  20. Wang Y, Weng Y, Wang L (2014) Polym Test 36:119. https://doi.org/10.1016/j.polymertesting.2014.04.001

    Article  CAS  Google Scholar 

  21. Nguyen TC, Ruksakulpiwat C, Rugmai S, Soontaranon S, Ruksakulpiwat Y (2017) Compos Sci Technol 143:106. https://doi.org/10.1016/j.compscitech.2017.02.032

    Article  CAS  Google Scholar 

  22. Khan BA, Na H, Chevali V, Warner P, Zhu J, Wang H (2018) J Mater Sci Technol 34:387. https://doi.org/10.1016/j.jmst.2017.03.004

    Article  Google Scholar 

  23. Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Jasso-Gastinel CF, Silva-Jara JM, López-Naranjo EJ, Pérez-Fonseca AA (2020) Rev Mex Ing Quim 19:455. https://doi.org/10.24275/rmiq/Mat627

    Article  Google Scholar 

  24. Sood M, Dwivedi G (2018) Egypt J Pet 27:775. https://doi.org/10.1016/j.ejpe.2017.11.005

    Article  Google Scholar 

  25. Kyutoku H, Maeda N, Sakamoto H, Nishimura H, Yamada K (2019) Carbohydr Polym 203:95. https://doi.org/10.1016/j.carbpol.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  26. Xie Y, Xiao Z, Grüneberg T, Militz H, Hill CAS, Steuernagel L, Mai C (2010) Compos Sci Technol 70:2003. https://doi.org/10.1016/j.compscitech.2010.07.024

    Article  Google Scholar 

  27. Islam MS, Pickering KL, Foreman NJ (2010) Polym Degrad Stab 95:59. https://doi.org/10.1016/j.polymdegradstab.2009.10.010

    Article  CAS  Google Scholar 

  28. Pickett JE (2018). In: Kutz M (ed) Handbook of environmental degradation of materials, 3rd edn. Elsevier, New York, p 163. https://doi.org/10.1016/C2016-0-02081-8

    Chapter  Google Scholar 

  29. Ratanawilai T, Taneerat K (2018) Constr Build Mater 172:349. https://doi.org/10.1016/j.conbuildmat.2018.03.266

    Article  CAS  Google Scholar 

  30. Koo GH, Jang J (2008) J Fiber Polym 9:674. https://doi.org/10.1007/s12221-008-0106-1

    Article  CAS  Google Scholar 

  31. Harmean AS, Khalina A, Azowa I, Hassan MA, Tarmian A, Jawaid M (2015) Polym Compos 36:576. https://doi.org/10.1002/pc.22974

    Article  CAS  Google Scholar 

  32. Mathew AP, Oksman K, Sain M (2006) J Appl Polym Sci 101:300. https://doi.org/10.1002/app.23346

    Article  CAS  Google Scholar 

  33. Jiang A, Xu X, Wu H (2016) Polym Compos 37:802. https://doi.org/10.1002/pc.23237

    Article  CAS  Google Scholar 

  34. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

    Article  Google Scholar 

  35. Varsavas SD, Kaynak C (2018) Mater Today Commun 15:344. https://doi.org/10.1016/j.mtcomm.2017.11.008

    Article  CAS  Google Scholar 

  36. Turku I, Kärki T (2016) Composites Part A Appli Sci Manuf 81:305. https://doi.org/10.1016/j.compositesa.2015.11.028

    Article  CAS  Google Scholar 

  37. Badji C, Soccalingame L, Garay H, Bergeret A, Bénézet JC (2017) Polym Degrad Stab 137:162. https://doi.org/10.1016/j.polymdegradstab.2017.01.010

    Article  CAS  Google Scholar 

  38. Lizarraga-Laborín LL, Quiroz-Castillo JM, Encinas-Encinas JC, Castillo-Ortega MM, Burruel-Ibarra SE, Romero-García J, Tores-Ochoa JA, Cabrera-Germán D, Rodríguez-Félix DE (2018) Polym Degrad Stab 155:43. https://doi.org/10.1016/j.compositesa.2015.11.028

    Article  CAS  Google Scholar 

  39. Chun KS, Husseinsyah S (2014) J Thermoplast Compos Mater 27:1. https://doi.org/10.1177/0892705712475008

    Article  CAS  Google Scholar 

  40. Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Composites Part A Appli Sci Manuf 63:76. https://doi.org/10.1016/j.compositesa.2014.04.003

    Article  CAS  Google Scholar 

  41. Sajna VP, Mohanty S, Nayak SK (2016) Polym Adv Technol 27:515. https://doi.org/10.1002/pat.3698

    Article  CAS  Google Scholar 

  42. Arias A, Heuzey MC, Huneault MA (2013) Cellulose 20:439. https://doi.org/10.1007/s10570-012-9836-8

    Article  CAS  Google Scholar 

  43. Kaynak C, Erdogan AR (2016) Polym Adv Technol 27:812. https://doi.org/10.1002/pat.3721

    Article  CAS  Google Scholar 

  44. Sawpan MA, Islam MR, Beg MDH, Pickering K (2019) J Polym Environ 27:942. https://doi.org/10.1007/s10924-019-01405-2

    Article  CAS  Google Scholar 

  45. Kaynak C, Sari B (2016) Appl Clay Sci 121–122:86. https://doi.org/10.1016/j.clay.2015.12.025

    Article  CAS  Google Scholar 

  46. Spiridon I, Darie RN, Kangas H (2016) Compos Part B Eng 92:19. https://doi.org/10.1016/j.compositesb.2016.02.032

    Article  CAS  Google Scholar 

  47. Spiridon I, Darie-Nita RN, Bele A (2018) J Clean Prod 172:2567. https://doi.org/10.1016/j.jclepro.2017.11.154

    Article  CAS  Google Scholar 

  48. Kim KW, Lee BH, Kim HJ (2012) J Therm Anal Calorim 108:1131. https://doi.org/10.1007/s10973-011-1350-y

    Article  CAS  Google Scholar 

  49. Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Compos Part B Eng 69:342. https://doi.org/10.1016/j.compositesb.2014.10.006

    Article  CAS  Google Scholar 

  50. Tsuji H, Sugiyama H, Sato Y (2012) J Polym Environ 20:706. https://doi.org/10.1007/s10924-012-0424-7

    Article  CAS  Google Scholar 

  51. Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D (2015) Ind Crops Prod 77:833. https://doi.org/10.1016/j.indcrop.2015.09.057

    Article  CAS  Google Scholar 

  52. Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Constr Build Mater 144:525. https://doi.org/10.1016/j.conbuildmat.2017.03.209

    Article  CAS  Google Scholar 

  53. Tsuji H, Echizen Y, Saha SK, Nishimura Y (2005) Macromol Mater Eng 290:1192. https://doi.org/10.1002/mame.200500278

    Article  CAS  Google Scholar 

  54. Darie RN, Vlad S, Anghel N, Doroftei F, Tamminen T, Spiridon I (2015) Polym Adv Technol 26:941–952. https://doi.org/10.1002/pat.3506

    Article  CAS  Google Scholar 

  55. Lila MK, Shukla K, Komal UK, Singh I (2019) Composites Part B Eng 156:121. https://doi.org/10.1016/j.compositesb.2018.08.068

    Article  CAS  Google Scholar 

  56. Lv S, Gu J, Tan H, Zhang Y (2018) J Clean Prod 203:328. https://doi.org/10.1016/j.jclepro.2018.08.266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the State Council of Science and Technology of Jalisco (COECyTJAL) for the grant FODECIJAL 8107 − 2019 and the Mexican National Council of Science and Technology (CONACyT) for a scholarship (A.S. Martín del Campo, #742432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida A. Pérez-Fonseca.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín del Campo, A.S., Robledo-Ortíz, J.R., Arellano, M. et al. Accelerated Weathering of Polylactic Acid/Agave Fiber Biocomposites and the Effect of Fiber–Matrix Adhesion. J Polym Environ 29, 937–947 (2021). https://doi.org/10.1007/s10924-020-01936-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01936-z

Keywords

Navigation