Skip to main content
Log in

Biological Macromolecule Composite Films Made from Sagu Starch and Flour/Poly(ε-Caprolactone) Blends Processed by Blending/Thermo Molding

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Non-conventional starch sources (starch and flour) obtained from sagu (Canna edulis Kerr) rhizomes grown in the Venezuelan Amazon were used as biological macromolecule matrices. Biological macromolecule composite films prepared from sagu starch and flour/poly(ε-caprolactone) (PCL) blends were then obtained by blending/thermo molding. The use of flours as a rich source of starch has attracted much attention as they are cheaper than starch, thus making them commercially more competitive. The PCL-containing films proved to be less stable in an alkaline medium and less dense (0.60–0.66 g/cm3), and were also thinner (1.15–1.17 mm), rougher, more crystalline (20.5–27.1%) and opaque (1.45–1.52) than the films without added PCL. Films made from the flour/PCL blend showed a greater phase separation than the starch/PCL films. The use of flour as a starchy source is interesting. However, the results of attenuated total reflectance Fourier transform infrared spectroscopy and water activity suggest that the films prepared from sagu starch-glycerol had stronger hydrogen bonding interactions than those made from flour-glycerol. This led to the sagu starch-based film being less susceptible to moisture and more stable under alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gutiérrez TJ (2017) Effects of exposure to pulsed light on molecular aspects of edible films made from cassava and taro starch. Innov Food Sci Emerg Technol 41:387–396. https://doi.org/10.1016/j.ifset.2017.04.014

    Article  CAS  Google Scholar 

  2. Gutiérrez TJ (2017) Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydr Polym 165:169–179. https://doi.org/10.1016/j.carbpol.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  3. Fabra MJ, Lopez-Rubio A, Lagaron JM (2013) High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocoll 32:106–114. https://doi.org/10.1016/j.foodhyd.2012.12.007

    Article  CAS  Google Scholar 

  4. Ortega-Toro R, Morey I, Talens P, Chiralt A (2015) Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydr Polym 127:282–290. https://doi.org/10.1016/j.carbpol.2015.03.080

    Article  CAS  PubMed  Google Scholar 

  5. Ortega-Toro R, Contreras J, Talens P, Chiralt. A (2015) Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Shelf Life 5:10–20. https://doi.org/10.1016/j.fpsl.2015.04.001

    Article  Google Scholar 

  6. Kweon D-K, Kawasaki N, Nakayama A, Aiba S (2004) Preparation and characterization of starch/polycaprolactone blend. J Appl Polym Sci 92:1716–1723. https://doi.org/10.1002/app.20130

    Article  CAS  Google Scholar 

  7. Gutiérrez TJ, Alvarez VA (2017) Films made by blending poly(ε-caprolactone) with starch and flour from sagu rhizome grown at the venezuelan amazons. J Polym Environ 25:701–716. https://doi.org/10.1007/s10924-016-0861-9

    Article  CAS  Google Scholar 

  8. Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74:2401–2430. https://doi.org/10.1007/s00289-016-1814-0

    Article  CAS  Google Scholar 

  9. Pérez E, Bahnassey YA, Breene WM (1993) A simple laboratory scale method for isolation of amaranth starch. Starch-Stärke 45:211–214. https://doi.org/10.1002/star.19930450605

    Article  Google Scholar 

  10. Pacheco E (2001) Evaluación nutricional de sopas deshidratadas a base de harina de plátano verde. Digestibilidad in vitro de almidón, Acta Científica Venez 52:278–282. http://acta.ivic.gob.ve/52-4/articulo6.pdf

  11. Mollega Mainsard IP (2008) Caracterización y biodegradación de mezclas de policaprolactona y poliácido láctico con almidón de yuca. Universidad Simón Bolívar. http://159.90.80.55/tesis/000144538.pdf

  12. Maliger RB, Halley PJ (2014) Reactive extrusion for thermoplastic starch-polymer blends. In: Halley PJ, Avérous LR (eds) Starch polymers. Elsevier, Burlington, pp 291–317 https://doi.org/10.1016/B978-0-444-53730-0.00030-0

    Chapter  Google Scholar 

  13. Biliaderis CG, Lazaridou A, Arvanitoyannis I (1999) Glass transition and physical properties of polyol-plasticised pullulan–starch blends at low moisture. Carbohydr Polym 40:29–47. https://doi.org/10.1016/S0144-8617(99)00026-0

    Article  CAS  Google Scholar 

  14. Merino D, Ludueña LN, Alvarez VA (2018) Dissimilar tendencies of innovative green clay organo-modifier on the final properties of poly(ε-caprolactone) based nanocomposites. J Polym Environ 26(2):716–727. https://doi.org/10.1007/s10924-017-0994-5

    Article  CAS  Google Scholar 

  15. H. Tsuji, T. Ishizaka, Porous biodegradable polyesters, 3. preparation of porous poly(ε-caprolactone) films from blends by selective enzymatic removal of poly(l-lactide), Macromol Biosci 1 (2001) 59–65

    Article  CAS  Google Scholar 

  16. Valencia MT, Rodríguez (2001) Efecto del tratamiento de preservación por depresión e la actividad acuosa en la calidad del alga. Universidad de Buenos Aires, Buenos Aires

    Google Scholar 

  17. Atarés L, Bonilla J, Chiralt A (2010) Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J Food Eng 100:678–687. https://doi.org/10.1016/j.jfoodeng.2010.05.018

    Article  CAS  Google Scholar 

  18. ASTM D1925-70 (1988) Test method for yellowness index of plastics. http://www.astm.org/Standards/D1925.htm

  19. Han JH, Floros JD (1997) Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J Plast Film Sheeting 13:287–298. https://doi.org/10.1177/875608799701300405

    Article  CAS  Google Scholar 

  20. Pereira VA, de Arruda INQ, Stefani R (2015) Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocoll 43:180–188. https://doi.org/10.1016/j.foodhyd.2014.05.014

    Article  CAS  Google Scholar 

  21. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69:748–755. https://doi.org/10.1016/j.carbpol.2007.02.010

    Article  CAS  Google Scholar 

  22. Mathew S, Brahmakumar M, Abraham TE (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 82:176–187. https://doi.org/10.1002/bip.20480

    Article  CAS  PubMed  Google Scholar 

  23. Batista Reis LC, Oliveira de Souza C, Alves da Silva JB, Martins AC, Larroza Nunes I, Druzian JI (2015) Active biocomposites of cassava starch: the effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product. Food Bioprod Process 94:382–391. https://doi.org/10.1016/j.fbp.2014.05.004

    Article  CAS  Google Scholar 

  24. Pérez E, Segovia X, Tapia MS, Schroeder M (2012) Native and cross-linked modified Dioscorea trifida (cush-cush yam) starches as bio-matrices for edible films. J Cell Plast 48:545–556. https://doi.org/10.1177/0021955X12445603

    Article  CAS  Google Scholar 

  25. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll 45:211–217. https://doi.org/10.1016/j.foodhyd.2014.11.017

    Article  CAS  Google Scholar 

  26. Pelissari FM, Andrade-Mahecha MM, PJ do A Sobral, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll. 30:681–690. https://doi.org/10.1016/j.foodhyd.2012.08.007

    Article  CAS  Google Scholar 

  27. Müller CMO, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocoll 23:1328–1333. https://doi.org/10.1016/j.foodhyd.2008.09.002

    Article  CAS  Google Scholar 

  28. Jay JM (1995) Intrinsic and extrinsic parameters of foods that affect microbial growth. In: Jay JM (ed) Modern food microbiol. 5th ed. Springer, Boston, pp 38–66. https://doi.org/10.1007/978-1-4615-7476-7_3

    Chapter  Google Scholar 

  29. Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocoll 54:234–244. https://doi.org/10.1016/j.foodhyd.2015.10.012

    Article  CAS  Google Scholar 

  30. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8. https://doi.org/10.1016/j.fpsl.2014.09.002

    Article  Google Scholar 

  31. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504. https://doi.org/10.1039/B820162P

    Article  CAS  PubMed  Google Scholar 

  32. Mitrus M (2005) Glass transition temperature of thermoplastic starches. Int Agrophys 19:237–241. http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2005_19_3_237.pdf

  33. López OV, Versino F, Villar MA, García MA (2015) Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films. Carbohydr Polym 134:324–332. https://doi.org/10.1016/j.carbpol.2015.07.081

    Article  CAS  PubMed  Google Scholar 

  34. Gutiérrez TJ, González G (2016) Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food Bioprocess Technol 9:1812–1824. https://doi.org/10.1007/s11947-016-1765-3

    Article  CAS  Google Scholar 

  35. Sukhija S, Singh S, Riar CS (2016) Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocoll 60:128–137. https://doi.org/10.1016/j.foodhyd.2016.03.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417), Universidad Nacional de Mar del Plata (UNMdP) for financial support. Dr. Mirian Carmona-Rodríguez for their valuable contribution. Thanks also to the Institute of Food Science and Technology (ICTA) of the Central University of Venezuela (UCV), especially Jusneydy Suniaga, for managing the purchase of the rhizomes from the Venezuelan Amazon, as well as obtaining isolated starch and flour, and the determination of water activity and color parameters of the films. Many thanks also to Dr. Gema González and M.Sc. Antonio Monsalve of Venezuelan Institute for Scientific Research (IVIC) for allowing the M.Sc. Kelvia Álvarez to carry out the acquisition of AFM images in her laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomy J. Gutiérrez.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, T.J. Biological Macromolecule Composite Films Made from Sagu Starch and Flour/Poly(ε-Caprolactone) Blends Processed by Blending/Thermo Molding. J Polym Environ 26, 3902–3912 (2018). https://doi.org/10.1007/s10924-018-1268-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1268-6

Keywords

Navigation