Skip to main content
Log in

Alkaline Delignification of Cactus Fibres for Pulp and Papermaking Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Stable aqueous suspensions with high cellulosic contents and low fractions of lignin have been prepared from Cactus fibres via chemical delignification of the Cactus biomass feedstock with a sodium hydroxide–anthraquinone (soda–AQ) mixture. In order to optimize the reaction parameters, various temperatures between 120 and 170 °C and reaction times between 60 and 180 min were examined. The optimal yield of the resulting alkaline pulps (corresponding to the complete reaction of the raw materials) was equal to 41.4%, while the morphological parameters of individual cellulose fibres (such as length, width, and fraction of fine elements) were determined using a MorFi analyser. The estimated degree of polymerization, water retention value, total charge, and drainability of the produced pulps confirmed their suitability for papermaking applications; as a result, paper sheets were manually prepared using a Rapid-Köthen sheet former apparatus. The morphological analysis of the produced paper was conducted using a scanning electron microscopy technique, and its structural and mechanical properties were evaluated with the standard laboratory testing equipment. The obtained results indicate that the paper fabricated from Cactus fibres via the soda–AQ delignification process exhibits homogenous morphology as well as satisfactory mechanical and structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gandini A, Belgacem MN (2013) 4-The state of the art of polymers from renewable resources. Handbook of biopolymers and biodegradable plastics, a volume in plastics design library, pp 71–82

  2. Bajpai P (2015) Pulp and paper industry: microbiological issue in papermaking, chap. 1—general introduction, pp 1–10

  3. Shakhes J, Marandi ABM, Zeinaly F, Sarzizn A, Saghafi, T (2011) Tabacco residuals as promising lignocellulosic materials for pulp and paper industry. Bioresources 6:4481–4493

    CAS  Google Scholar 

  4. Anupam K, Lal PS, Bist V, Sharma AK, Swaroop V (2014) Raw material selection for pulping and papermaking using TOPSIS multiple criteria decision making design. Environ Prog Sustain Energy 33:1034–1041

    Article  CAS  Google Scholar 

  5. Barberàa L, Pèlacha MA, Pérez I, Puiga J, Mutjéa P (2011) Upgrading of hemp core for papermaking purposes by means of organosolv process. Ind Crops Prod 34:865–872

    Article  Google Scholar 

  6. Gharehkhani S, Sadeghinezhad E, Newaz Kazi S, Yarmand H, Badarundi A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803

    Article  CAS  Google Scholar 

  7. Khalil HPSA, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  Google Scholar 

  8. Vallette P, Coudhens C (1992) “Le bois, la pâte, le papier”, 3éme édition. CentreTechnique de l’industrie des Papiers, Cartons et Cellulose, pp 19–20

  9. Enayati AA, Hamzeh Y, Mirshokraie SM, Molaii M (2009) Paper making potential of canola stalk. Bioresources 4:245–256

    CAS  Google Scholar 

  10. Mansouri S, Khiari R, Bendouissa N, Saadallah S, Mauret E, Mhenni F (2012) Chemical composition and pulp characterization of Tunisian vine stems. Ind Crops Prod 36:22–27

    Article  CAS  Google Scholar 

  11. Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Chemical composition and pulping of date palm rachis and Posidonia oceanica—a comparison with other wood and non-wood fiber sources. Bioresour Technol 101:775–780

    Article  CAS  Google Scholar 

  12. Ferhi F, Das S, Moussaoui Y, Elaloui E, Yanez JG (2014) Paper from Stipagrostis pungens. Ind Crops Prod 59:109–114

    Article  CAS  Google Scholar 

  13. Ferhi F, Satyajit D, Elaloui E, Moussaoui Y, Yanez JG (2014) Chemical characterization and suitability for papermaking applications studied on four species naturally growing in Tunisia. Ind Crops Prod 61:180–185

    Article  CAS  Google Scholar 

  14. Moussaoui Y, Ferhi F, Elaloui E, Bensalem R, Belgacem MN (2011) Utilisation of Astragalus armatus roots in papermaking. Bioresources 6:4969–4978.

    CAS  Google Scholar 

  15. Marrakchi Z, Khiari R, Oueslatic H, Mauret E, Mhenni F (2011) Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima)—effects of refining process. Ind Crops Prod 34:1572–1582

    Article  CAS  Google Scholar 

  16. Scalisia A, Morandib B, Inglesea P, Lo Biancoa R (2016) Cladode growth dynamics in Opuntia ficus-indica under drought. Environ Exp Bot 122:158–167

    Article  Google Scholar 

  17. Jimenez-Aguilar DM, Mújica-Paz H, Welti-Chanes J (2014) Phytochemical characterization of prickly pear (Opuntia spp.) and of its nutritional and functional properties: a review. Curr Nutr Food Sci 10:57–69

    Article  CAS  Google Scholar 

  18. Nefzaoui A, Ben Salem H (2000) Opuntia: a strategic fodder and efficient tool to combat desertification in the WANA region. Cactusnet Newslett 2000:2–24

    Google Scholar 

  19. Bayar N, Kriaa M, Kammoun R (2016) Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int J Biol Macromol 92:441–450

    Article  CAS  Google Scholar 

  20. Abdel-Hameed ESS, Nagaty MA, Salman MS, Bazaid SA (2014) Phytochemicals, nutritionals and antioxidant properties of two prickly pear Cactus cultivars (Opuntia ficus-indica Mill.) growing in Taif, KSA. Food Chem 160:31–38

    Article  CAS  Google Scholar 

  21. Angulo-Bejarano PI, Martínez-Cruz O, Paredes-Lopez O (2014) Phytochemical content, nutraceutical potential and biotechnological applications of an ancient Mexican plant: nopal (Opuntia ficus-indica). Curr Nutr Food Sci 10:196–217

    Article  CAS  Google Scholar 

  22. Zegbe JA, Mena-Covarrubias J, Dominguez-Canales VSI (2015) Cactus mucilage as a coating film to enhance shelf life of unprocessed guavas (Psidium guajava L.). In: VIIIth IC on Cactus pear and Cochineal, pp 423–427

  23. Cejudo-Bastante MJ, Chaalal M, Louaileche H, Parrado J, Heredia FJ (2014) Betalain profile, phenolic content, and color characterization of different parts and varieties of Opuntia ficus-indica. J Agric Food Chem 62:8491–8499

    Article  CAS  Google Scholar 

  24. Nharingo T, Moyo M (2016) Application of Opuntia ficus-indica in bioremediation of wastewaters. J Environ Manag 166:55–72

    Article  CAS  Google Scholar 

  25. Bouakba M, Bezazi A, Boba K, Scarpa F, Bellamy S (2013) Cactus fiber/polyester biocomposites: manufacturing, quasi-static mechanical and fatigue characterisation. Compos Sci Technol 74:150–159.

    Article  CAS  Google Scholar 

  26. Greco A, Maffezzol A (2015) Rotational molding of biodegradable composites obtained with PAL reinforced by the wooden backbone of Opuntia ficus-indica cladodes. J Appl Polym Sci 132:42447

    Article  Google Scholar 

  27. Wise L, Murphy E, Addieco MAA (1946) Chlorite holocellulose: its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J 122:35–43

    CAS  Google Scholar 

  28. Anupam K, Swaroop V, Sharma AK, Lal PS, Bist V (2015) Sustainable raw material selection for pulp and paper using SAW multiple criteria decision making design. IPPTA J 27:67–76

    Google Scholar 

  29. Sihtola H, Kyrklund B, Laamanen L, Palenius I (1963) Comparison and conversion of viscosity and DP values determined by different methods. Pap ju Puu 45:225–232

    Google Scholar 

  30. Silvy J, Romatier G, Chiodi R (1968) Méthodes pratiques de contrôle du raffinage. Revue ATIP 22:31–53

    Google Scholar 

  31. Gran G (1952) Determination of the equivalent point in potentiometric titrations, II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  32. Hurter RW (2006) Nonwood plant fiber characteristics. http://www.hurterconsult.com/info.htm

  33. Sixta H (2008) Handbook of Pulp. Wiley, Weinheim

  34. Sharma AK, Anupam K, Swaroop V, Lal PS, Bist V (2015) Pilot scale soda-anthraquinone pulping of palm oil empty fruit bunches and elemental chlorine free bleaching of resulting pulp. J Clean Prod 106:422–429

    Article  Google Scholar 

  35. Sharma AK, Dutt D, Upadhyaya JS, Roy TK, (2011) Anatomical, morphological and chemical characterization of Bambusa tulda, Dendrocalamus hamiltonii, Bambusa balcooa, Melocanna baccifera, Bambusa arundinacea and Eucalyptus tereticornis. Bioresources 6:5062–5073

    CAS  Google Scholar 

  36. Kumar M, Kumar D (2011) Comparative study of pulping of banana stem. Int J Fiber Text Res 1:1–5

    Google Scholar 

  37. Mannai F, Ammar M, Yanez J, Elaloui E, Moussaoui Y (2016) Cellulose fiber from Tunisian Barbary Fig "Opuntia ficus-indica" for papermaking. Cellulose 23:2061–2072

    Article  CAS  Google Scholar 

  38. Bouiri B, Amrani M (2010) Elemental chlorine-free bleaching HAlfa pulp. J Ind Eng Chem 16:587–592

    Article  CAS  Google Scholar 

  39. Khristova P, Kordsachia O, Khider T (2005) Alkaline pulping with additives of date palm rachis and leaves from Sudan. Bioresour Technol 96:79–85

    Article  CAS  Google Scholar 

  40. Mutjé P, Pèlach MA, Vilaseca F, Garcia JC, Jimenez L (2005) A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood. Bioresour Technol 96:1125–1129

    Article  Google Scholar 

  41. Ferreira PJT, Gamelas JAF, Carvalho MGVS, Duarte GV, Canhoto JMPL, Passas R (2013) Evaluation of the papermaking potential of Ailanthus altissima. Ind Crops Prod 42:538–542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to Professor Mohamed Naceur Belgacem, director of Grenoble INP-Pagora, for his valuable advices and assistance as well as to the Tunisian Ministry of Higher Education for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Moussaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannai, F., Ammar, M., Yanez, J.G. et al. Alkaline Delignification of Cactus Fibres for Pulp and Papermaking Applications. J Polym Environ 26, 798–806 (2018). https://doi.org/10.1007/s10924-017-0968-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0968-7

Keywords

Navigation