Skip to main content

Advertisement

Log in

Interactive Influence of Biofiber Composition and Elastomer on Physico-Mechanical Properties of PLA Green Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this work was to improve the impact and thermal properties of polylactic acid (PLA)-based biocomposite by appropriate application of cellulosic fiber and a bioelastomer. Biocomposites formulations with fiber contents of up to 20% in combination with a bioelastomer were extrusion-compounded in a twin-screw extruder followed by molding in an injection molding system. Fibers used in the formulations included three types of cellulosic fiber; namely, raw fiber from oat hull biomass (RF), hydrolysis byproduct (ATF) which was the solid fraction obtained from an acid-catalyzed hydrolysis of RF, and delignified fibers (AD30, AD65, AD100) which were the products of delignification of ATF. Formulated biocomposites were characterized for thermal (glass transition and melting temperatures, and enthalpy of melting) and physico-mechanical (tensile and bending strengths, stiffness, impact energy, and water absorption) properties. Among all types of biofibers, RF resulted in poor properties in the biocomposites due to the high hemicellulose content in the structure. On the other hand, the ratio of lignin to cellulose (in the absence of hemicellulose) in the modified fibers did not significantly affect the physico-mechanical and thermal properties of the biocomposites. The elastomer applied in the formulations improved the impact energy, thermal properties, and elongation at break of the composites. However, it adversely affected the strength and water resistance of biocomposites, especially in the presence of hemicellulose. The results indicated that, depending on the application, a wide range of PLA green composites with different physico-mechanical properties can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zini E, Scandola M (2011) Polym Compos 32:1905

    Article  CAS  Google Scholar 

  2. Mohanty AK, Misra M, Drzal LT(2002) J Polym Environ 10:19

    Article  CAS  Google Scholar 

  3. Mohanty AK, Drzal LT, Misra M(2002) J Adhesion Sci Technol 16:999.

    Article  CAS  Google Scholar 

  4. Soleimani M, Tabil LG (2015) Biochem Eng J 82:166

    Article  Google Scholar 

  5. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Compos Sci Technol 63:1281

    Article  CAS  Google Scholar 

  6. Taib RM, Ramarad S, Ishak ZAM, Todo M (2010) Polym Compos 31:1213

    CAS  Google Scholar 

  7. Gurunathan T, Mohanty S, Nayak SK (2015) Composites. Part A 77:1

    Article  CAS  Google Scholar 

  8. Shalwan A, Yousif BF (2013) Mater Des 48:14

    Article  CAS  Google Scholar 

  9. Tábi T, Tamás P, Kovács JG (2013) Express Polym Lett 7:107

    Article  Google Scholar 

  10. Soleimani M, Tabil LG, Niu C (2015) AIChE J 61:1783

    Article  CAS  Google Scholar 

  11. ASTM D638-14 (2014) Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA

  12. ASTM D790-10 (2010) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA,

  13. ISO 179-1 (2010), Determination of Charpy impact properties European Committee for Standardization, Brussels

  14. ASTM D570-98 (2010), Standard test method for water absorption of plastics (ASTM International, West Conshohocken, PA

  15. AOAC (2005), AOAC Method 2002.04-Amylase-treated neutral detergent fiber in feeds, AOAC International

  16. AOAC (1997), AOAC Method 973.18-Fiber (acid detergent) and lignin in animal feeds AOAC International

  17. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure, National Renewable Energy Laboratory, Golden

    Google Scholar 

  18. Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 63:1317

    Article  CAS  Google Scholar 

  19. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Compos Sci Technol 66:2776

    Article  CAS  Google Scholar 

  20. Le Digabel F, Averous L (2006) Carbohydr Polym 66:537

    Article  CAS  Google Scholar 

  21. Qiang T, Yu D, Gao H (2012) J Appl Polym Sci 124:1831

    Article  CAS  Google Scholar 

  22. Soleimani M, Tabil LG, Panigrahi S, Opoku A (2008) J Polym Environ 16:74

    Article  CAS  Google Scholar 

  23. Khoo RZ, Chow WS (2014)J Thermoplast Compos Mater. doi:10.1177/0892705715616857.

    Google Scholar 

  24. Chow WS, Leu YY, Ishak ZAM (2014) Polym Plast Technol Eng 53:858

    Article  CAS  Google Scholar 

  25. Tham WL, Poh BT, Ishak M, Arifin Z, Chow WS (2016) J Appl Polym Sci. doi:10.1002/APP.42850

    Google Scholar 

  26. Balakrishnan H, Hassan A, Imran M, Wahit MU (2011), J Polym Environ 19:863.

    Article  CAS  Google Scholar 

  27. Sajna VP, Mohanty S, Nayak SK (2015) J Thermoplast Compos Mater. doi:10.1177/0892705715604679.

    Google Scholar 

  28. Reddya N, Yang Y (2005) Polymer 46:5494

    Article  Google Scholar 

  29. Reddya N, Yang Y (2005) Green Chem 7:190.

    Article  Google Scholar 

  30. Rahman A, Panigrahi S, Kushwaha RL, Alam MM (2013) Int J Comp Mater 3:122

    CAS  Google Scholar 

  31. Awal A, Rana M, Sain M (2015) Mech Mater 80:87

    Article  Google Scholar 

  32. Anuar H, Zuraida A (2011) Malaysia Polym J 6:51.

    Google Scholar 

  33. Cheung HY, Lau KT, Tao XM, Hui D (2008) Compos 39:1026.

    Article  Google Scholar 

  34. Qian S, Sheng K, Yao W, Yu H (2015) Appl Polym Sci. doi:10.1002/app.43425

    Google Scholar 

  35. Liu T, Yu F, Yu X, Zhao X, Lu A, Wang J (2012) J Appl Polym Sci 125:1292

    Article  CAS  Google Scholar 

  36. Johari AP, Mohanty S, Kurmvanshi SK, Nayak SK (2016) ACS Sustain Chem Eng 4:1619

    Article  CAS  Google Scholar 

  37. Yaacab ND, Ismail H, Ting SS (2016) Procedia Chem 19:757.

    Article  CAS  Google Scholar 

  38. Abdulkhani A, Hosseinzadeh J, Dadashi S, Mousavi M (2015) Cellul Chem Technol 49:597.

    CAS  Google Scholar 

  39. Dogu B, Kaynak C (2016) Cellulose 23:611

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lope G. Tabil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Tabil, L.G., Oguocha, I. et al. Interactive Influence of Biofiber Composition and Elastomer on Physico-Mechanical Properties of PLA Green Composites. J Polym Environ 26, 532–542 (2018). https://doi.org/10.1007/s10924-017-0967-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0967-8

Keywords

Navigation