Skip to main content
Log in

Vegetable Oil Based Polyurethane Containing 1,2,3-Triazolium Functional Groups as Antimicrobial Wound Dressing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Preparation of antimicrobial polyurethane wound dressing membranes from a mixture of castor oil and a novel soybean oil-based polyol containing 1,2,3-triazolium rings (QTSBO) was described in this research. QTSBO was prepared through N-alkylation of 1,2,3-triazole functional soybean oil (TSBO) with methyl iodide, and TSBO was synthesized from an azidated soybean oil and propargyl alcohol through click reaction. The excellent tensile strength of these dressings under dry state and minimum deterioration of this property at fully hydrated state guaranteed the mechanical protection of wounds during the entire period of the healing process. The measured quantities of equilibrium water absorption and water vapor transmission rate for the optimized dressings confirmed the applicability of the selected formulations for the preservation of proper moist environment over low exuding wounds. The cyto-compatibility of dressings was verified by the excellent ability of the dressings to support the growth and proliferation of dermal fibroblasts. Due to the presence of 1,2,3-triazolium rings the dressing showed efficient antimicrobial activity against different bacterial and fungal stains. Therefore, these dressing could promote wound healing by preserving moist and hygienic environment over the wound bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, Sundberg JP, Tagami H, Plonka PM, Thestrup-Pederson K, Bernard BA, Schröder JM, Dotto P, Chang CM, Williams ML, Feingold KR, King LE, Kligman AM, Rees JL, Christophers E (2002) Exp Dermatol 11(2):159–187

    Article  CAS  Google Scholar 

  2. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Mater Sci Eng C 48:651–662

    Article  CAS  Google Scholar 

  3. Caló E, Khutoryanskiy VV (2015) Eur Polym J 65:252–267

    Article  Google Scholar 

  4. Rahman MF, Islam JMM, Hassan MM, Ahsan Habib SM, Pervez MS, Khan MA (2013) Int J Polym Mater 62(13):695–699

    Article  CAS  Google Scholar 

  5. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel ShB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Adv Wound Care 3(7):445–464

    Article  Google Scholar 

  6. Smithmyer ME, Sawicki LA, Kloxin AM (2014) Biomater Sci 2(5):634–650

    Article  CAS  Google Scholar 

  7. Sweeney IR, Miraftab M, Collyer G (2012) Int Wound J 9(6):601–612

    Article  Google Scholar 

  8. Boateng JS, Matthews KH, Stevens HNE, Eccleston GMG (2008) J Pharm Sci 97(8):2892–2923

    Article  CAS  Google Scholar 

  9. Weller C, Sussman G (2006) J Pharm Pract Res 36(4):318–324

    Article  Google Scholar 

  10. Gharibi R, Yeganeh H, Rezapour-Lactoee A, Hassan ZM (2015) ACS Appl Mater Interfaces 7(43):24296–24311

    Article  CAS  Google Scholar 

  11. Yücedag F, Atalay-Oral C, Erkal S et al (2010) J Appl Polym Sci 115(3):1347–1357

    Article  Google Scholar 

  12. Sahraro M, Yeganeh H, Sorayya M (2016) Mater Sci Eng C 59:1025–1037

    Article  CAS  Google Scholar 

  13. Abdali Z, Yeganeh H, Solouk A, Gharibi R, Sorayya M (2015) RSC Adv 5(81):66024–66036

    Article  CAS  Google Scholar 

  14. Islam S, Bhuiyan MAR, Islam MN (2016) J Polym Environ. doi:10.1007/s10924-016-0865-5

    Google Scholar 

  15. King A, Chakrabarty S, Zhang W, Zeng X, Ohman DE, Wood LF, Abraham Sh, Rao R, Wynne KJ (2014) Biomacromolecules 15(2):456–467

    Article  CAS  Google Scholar 

  16. Zhong W (2015) Cutan Ocul Toxicol 34(1):61–67

    Article  CAS  Google Scholar 

  17. Solairaj D, Rameshthangam P (2016) J Polym Environ. doi:10.1007/s10924-016-0822-3

    Google Scholar 

  18. Jennings MC, Minbiole KPC, Wuest WM (2015) ACS Infect Dis 1(7):288–303

    Article  CAS  Google Scholar 

  19. Vieira DB, Carmona-Ribeiro AM (2006) J Antimicrob Chemother 58(4):760–767

    Article  CAS  Google Scholar 

  20. Yari A, Yeganeh H, Bakhshi H (2012) J Mater Sci Mater Med 23(9):2187–2202

    Article  CAS  Google Scholar 

  21. Zhou Z, Yan D, Cheng X, Kong M, Liu Y, Feng C, Chen X (2016) Int J Biol Macromol 89:471–476

    Article  CAS  Google Scholar 

  22. Tejero R, López D, López-Fabal F, et al. (2015) Polym Chem 6(18):3449–3459

    Article  CAS  Google Scholar 

  23. Tejero R, López D, López-Fabal F et al (2015) Biomacromolecules 16(6):1844–1854

    Article  CAS  Google Scholar 

  24. Liang L, Astruc D (2011) Coord Chem Rev 255:2933–2945

    Article  CAS  Google Scholar 

  25. Van Dijk M, Rijkers DTS, Liskamp RMJ, Nostrum CFV, Hennink WE (2009) Bioconjug Chem 20(11):2001–2016

    Article  Google Scholar 

  26. Kantheti S, Narayan R, Raju K (2015) RSC Adv 5(5):3687–3708

    Article  CAS  Google Scholar 

  27. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani, Sh (2013) Macromolecules 46(19)7777–7788

    Article  CAS  Google Scholar 

  28. Dimitrov-Raytchev P, Beghdadi S, Serghei A, Drockenmuller E (2013) J Polym Sci 51:34–38

    Article  CAS  Google Scholar 

  29. Obadia MM, Drockenmuller E (2016) Chem Commun 52:2433–2450

    Article  CAS  Google Scholar 

  30. Zhu H-P, Yang F, Tang J, He M-Y (2003) Green Chem 5(1):38–39

    Article  CAS  Google Scholar 

  31. Gharibi R, Yeganeh H, Gholami H, Hassan ZM (2014) RSC Adv 4(107):62046–62060

    CAS  Google Scholar 

  32. Gholami H, Yeganeh H, Gharibi R, Jalilian M, Sorayya M (2015) Polymer 62:94–108

    Article  CAS  Google Scholar 

  33. Lin Q-H, Li Y-C, Li Y-Y, Wang Z, Liu W, Qi C, Pang SP (2012) J Mater Chem 22(2):666–674

    Article  CAS  Google Scholar 

  34. Yacob Z, Liebscher J (2015) In: Topics in heterocyclic chemistry, vol. 40. Springer, Heidelberg, pp 167–201

  35. Mudraboyina BP, Obadia MM, Allaoua I, Sood R, Serghei A, Drockenmuller E (2014) Chem Mater 26(4):1720–1726

    Article  CAS  Google Scholar 

  36. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Shokrgozar MA, Yari A, Eslami SNS (2013) Mater Sci Eng C 33(1):153–164

    Article  CAS  Google Scholar 

  37. Bakhshi H, Yeganeh H, Mehdipour-Ataei S (2013) J Biomed Mater Res A 101(6):1599–1611

    Article  Google Scholar 

  38. Menard KP (2008) Dynamic mechanical analysis. CRC Press, New York

    Book  Google Scholar 

  39. Bakhshi H, Yeganeh H, Yari A, Nezhad SK (2014) J Mater Sci 49(15):5365–5377

    Article  CAS  Google Scholar 

  40. Garrison TF, Zhang Z, Kim HJ, Mitra D, Xia Y, Pfister DP, Stecher BFB, Larock RC, Kessler MR (2014) Macromol Mater Eng 299(9):1–10

    Google Scholar 

  41. Swanson T Asimus M, McGuiness B (2014) Wound management for the advanced practitioner. IP Communications, Victoria

    Google Scholar 

  42. Silver FH (1994) Biomaterials, medical devices and tissue engineering: an integrated approach. Springer, Dordrecht, pp 46–91

    Book  Google Scholar 

  43. Yari A, Yeganeh H, Bakhshi H, Gharibi R (2014) J Biomed Mater Res A 102(1):84–96

    Article  Google Scholar 

  44. Black J, Clark M, Dealey C, Brindle CT, Alves P, Santamaria N, Call E (2015) Int Wound J 12(4):484–488

    Article  Google Scholar 

  45. Stratton TR, Rickus JL, Youngblood JP (2009) Biomacromolecules 10(9):2550–2555

    Article  CAS  Google Scholar 

  46. Fischer D, Li Y, Ahlemeyer B, Krieglsteinc J, Kissela T (2003) Biomaterials 24(7):1121–1131

    Article  CAS  Google Scholar 

  47. Kugel A, Stafslien S, Chisholm BJ (2011) Prog Org Coat 72(3):222–252

    Article  CAS  Google Scholar 

  48. Nigmatullin R, Gao F (2012) Macromol Mater Eng 297(11):1038–1074

    Article  CAS  Google Scholar 

  49. Muñoz-Bonilla A, Fernández-García M (2012) Prog Polym Sci 37(2):281–339

    Article  Google Scholar 

  50. Timofeeva L, Kleshcheva N (2011) Appl Microbiol Biotechnol 89(3):475–492

    Article  CAS  Google Scholar 

  51. Gour N, Ngo KX, Vebert-Nardin C (2014) Macromol Mater Eng 299(6):648–668

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Yeganeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 641 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, H., Yeganeh, H., Burujeny, S.B. et al. Vegetable Oil Based Polyurethane Containing 1,2,3-Triazolium Functional Groups as Antimicrobial Wound Dressing. J Polym Environ 26, 462–473 (2018). https://doi.org/10.1007/s10924-017-0964-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0964-y

Keywords

Navigation