Skip to main content
Log in

Preparation and Characterization of New Environmental Functional Polymers Based on Vanillin and N-isopropylacrylamide for Post Polymerization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The study aims to synthetize a new functional acrylate monomer from vanillin in one step reaction. The new monomer has called by vanillin acrylate and abbreviated (VA). It was confirmed by chemical methods 1H NMR, 13C, IR and UV indicated logic results. The homopolymer has been prepared by free radical polymerization and characterized chemically and physically, the 1HNMR and IR have proofed the presence of aldehyde group in the polymer main chain. This monomer was used to synthesize three different molar concentrations of temperature responsive functional polymers with N-isopropylacrylamide via free radical polymerization by AIBN in solution. The 1H NMR was used for determination of actual mole concentration of each monomer. The aldehyde group in polymers were used as a linker for grafting with primary amine compounds by click reactions to form Schiff’s base imine compounds. The grafted copolymers were also investigated by 1H NMR and IR for structure elucidation. Gel permeation chromatography GPC was used for determination the molecular weight and polydispersity; DSC for glass temperature of solid polymers; XRD for crystallinity. UV–Vis Spectroscopy was used for the determination of phase separation or the lower critical solution temperature (Tc) of polymers solution before and after grafting, not only in deionized water but in pH 5 and pH 11.

Graphical Abstract

Synthesis of new functional monomer based on vanillin in one step reaction. Monomer has been successfully polymerized by free radical polymerization using AIBN as initiator. Three different mole ratios (10, 15, 20 mol%) of copolymer with NIPAAm were prepared. All monomers and polymers have been chemically elucidated. The aldehyde functional group used as linker for primary amine compounds, the final products have been characteristics as T, pH dual responsive polymers the phase transition temperature of copolymer before and after grafting was determined by UV.vis Spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Abdelaty MSA, Kuckling D (2016) Gels 2:13

    Article  Google Scholar 

  2. Deshmukh PK, Ramani KP, Singh SS, Tekade AR, Chatap VK, Patil GB, Bari SB (2013) J Control Release 166:306

    Article  Google Scholar 

  3. Kikuchi A, Okano T (2002) Prog Polym Sci, 27:1193

    Article  Google Scholar 

  4. Ware T, Simon D, Rennaker RL, Voit W (2013) Smart polymers for neural interfaces. Polym Rev 53:129

    Article  Google Scholar 

  5. Hamner KL, Alexander CM, Coopersmith K, Reishofer D, Provenza C, Maye MM (2013) ACS Nano 7:7020

    Article  Google Scholar 

  6. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:339

    Article  Google Scholar 

  7. Sato E, Masuda Y, Kadota J, Nishiyama T, Horibe H (2015) Eur Polym J 69:615

    Article  Google Scholar 

  8. Chen J-K, Chang C-J (2014) Materials 7:875

    Google Scholar 

  9. Meng H, Mohamadian H, Stubblefield M, Jerro D, Ibekwe S, Pang SS, Li GQ (2013) Smart Mater Struct 22:9

    Google Scholar 

  10. Zhang M, Estournes C, Bietsch W, A.H.E. Mueller (2004) Adv Funct Mater, 14:882

    Google Scholar 

  11. Matsukuma D, Yamamoto K, Aoyagi T (2006) Langmuir 22:5915

    Article  Google Scholar 

  12. Chen Y, Pang X-H, Dong C-M (2010) Adv Funct Mater 20:586

    Google Scholar 

  13. Schattling P, Jochum F-D, Theato P (2014) Poly Chem, 5:36

    Article  Google Scholar 

  14. Li Y, Zhang C, Zhou Y, Dong Y, Chen W (2015) Eur Polym J 69:448

    Article  Google Scholar 

  15. Fujiwara N, Asaka K, Nishimura Y, Oguro K, Torikai E (2000) Chem Mater, 12:1754

    Article  Google Scholar 

  16. Roy D, Cambre JN, Sumerlin B (2011) in Handbook of Stimuli-Responsive Materials (Ed.: M. W. Urban). Wiley-VCH, Weinheim

    Google Scholar 

  17. Xia Y, Yin X, Burke NAD, Stoever HDH (2005) Macromolecules 38:5943

    Google Scholar 

  18. Cheng G, Boeker A, Zhang M, Krausch G, Mueller AHE (2001) Macromolecules 34:6888

    Google Scholar 

  19. Chen JK, Wang JH, Fan SK, Chang JY (2012) J Phys Chem C 116:6992

    Google Scholar 

  20. Seuring J, Agarwal S (2012) Macromol Rapid Commun, 33:1920

    Article  Google Scholar 

  21. Chang K, Rubright NC, Lowery PD, Taite LJ (2013) J Polym Sci APolym Chem, 51:2078

    Google Scholar 

  22. M. Heskins, Guillet JE (1968) J Macromol Sci Chem A 2:1455

    Article  Google Scholar 

  23. Suwa K, Morishita K, Kishida A, Akashi M (1997) J Polym Sci A Polym Chem 35:3094

    Google Scholar 

  24. Schild HG (1992) Prog Polym Sci 17:249

    Article  Google Scholar 

  25. Okubo M, Ahmad H, Suzuki T (1998) Colloid Polym Sci 276:475

    Google Scholar 

  26. Iatridi Z, Mattheolabakis G, Avgoustakis K, Tsitsilianis C (2011) Soft Matter 7:11169

    Article  Google Scholar 

  27. Liu X, Yu D, Jin C, Song X, Cheng J, Zhao X, Qi X, Zhang G (2014) New J Chem 38:4830

    Article  CAS  Google Scholar 

  28. Soppimath KS, Tan DC-W, Yang Y-Y (2005) Adv Mater 17:326

    Article  Google Scholar 

  29. Delcea M, Möhwald H, Skirtach AG (2011) Adv Drug Deliv Rev 63:747

    Article  Google Scholar 

  30. Uhlig K, Boysen B, Lankenau A, Jaeger M, Wischerhoff E, Lutz J-F, Laschewsky A, Duschl C (2012) Biomicrofluidics 6:11

    Article  Google Scholar 

  31. Skirtach AG, Yashchenok AM, Möhwalda H (2011) Chem Commun 47:12746

    Article  Google Scholar 

  32. Bedard M, Skirtach AG, Sukhorukov GB (2007) Macromol Rapid Commun 28:1521

    Google Scholar 

  33. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Langmuir 25:8356

    Article  Google Scholar 

  34. Fleischmann EK, Zentel R (2013) Angew Chem Int Ed, 52:8827

    Article  Google Scholar 

  35. Zhang C, Madbouly SA, Kessler MR (2015) MacromolChemPhys 216:1822

    Google Scholar 

  36. Stanzione JF, Sadler JM, La Scala JJ, Wool RP (2012) ChemSusChem 5:1297

    Article  Google Scholar 

  37. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevina B (2014) Green Chem 16:1998

    Article  Google Scholar 

  38. Ananda SA, Bernard W, Ashfaqur R (2012) Green Chem 14:2397

    Google Scholar 

  39. Ananda SA, Ashfaqur R (2012) ISRN Polym Sci 3:5

    Google Scholar 

  40. Mohammed IA, Hamidi RM (2012) Molecules 17:656

    Article  Google Scholar 

  41. Firdausand M, Meier AR (2013) Eur Polym J, 49:166

    Google Scholar 

  42. Mialon L, Vanderhenst R, Pemba AG, Miller SA (2011) Macromol Rapid Commun, 32:1392

    Article  Google Scholar 

  43. Srinivasa V, Rao Samui AB (2008) Polym Chem, 46:7655

    Google Scholar 

  44. Sini NK, Bijwe J, Varma IK (2014) J Polym Sci Part A 52:11

    Article  Google Scholar 

  45. Shimasaki T, Yoshihara S, Shibata M (2012) Polym Compos 33:1847

    Article  Google Scholar 

  46. Xin Y, Yuan J (2012) Polym Chem 3:3055

    Article  Google Scholar 

  47. Zhou L, Cai Z, Yuan J, Kang Y, Yuan W, Shen D (2011) Polym Int 60:1308,

    Google Scholar 

  48. Etika KC, Cox MA, Grunlan JC (2010) Polymer 51:1770

    Article  Google Scholar 

  49. Y. Oda, S. Kanaoka, S. Aoshima (2010) J. Polym Sci Part A 48:1213

    Article  Google Scholar 

  50. Yan Q, Zhou R, Fu C, Zhang H, Yin Y, Yuan J (2011) Angew Chem Int Ed 50:4930

    Google Scholar 

  51. Dondoniand A, Marra A (2012) Chem Soc Rev 41:586

    Google Scholar 

  52. Fu R, Fu G (2011) Polym Chem 2:475

    Article  Google Scholar 

  53. Francand G, Kakkar AK (2010) Chem Soc Rev 39:1544

    Google Scholar 

  54. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kadeand MJ, Hawker CJ (2009) Chem Rev 109:5686

    Article  Google Scholar 

  55. Gupta S, Kuckling D, Kretschmer K, Choudhary V, Adler H-J (2007) J Polym Sci 45:679

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful acknowledge to Egyptian culture and missions, and The Deutscher Akademischer Austauch (DAAD) for financial assistance during the post doctor work in Germany of Momen S.A. Abdelaty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. Preparation and Characterization of New Environmental Functional Polymers Based on Vanillin and N-isopropylacrylamide for Post Polymerization. J Polym Environ 26, 636–646 (2018). https://doi.org/10.1007/s10924-017-0960-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0960-2

Keywords

Navigation