Skip to main content
Log in

Enhancement of Mechanical Properties of Bio-Resin Epoxy/Flax Fiber Composites using Acetic Anhydride

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chemically treated acetic anhydride (AA) flax fiber mats were investigated. Bio-based epoxy resin and conventional epoxy resin unidirectional fiber composites were manufactured using a vacuum bagging technique. Flax fibers in the bio-resin composites were chemically treated with 1, 2, 3 and 4% (AA), while the fibers used with the conventional resin were not treated. The composites with the conventional resin were compared with the bio-resin in an untreated condition. A 2% AA treatment improved the bio-resin composite tensile strength, stiffness and bond shear strength by 55%, 58% and 7%, respectively. These three properties were evaluated and the results statistically analyzed using ANOVA. The AA reduced moisture absorption intake and improved adhesion of the fiber/matrix interface. The composites treated with 1–2% AA were most successful with a 65% moisture resistance. The scanning electron microscope was used to observe the fiber surface and fractured surfaces of the untreated and treated flax fibers. A chemical pre-treatment has improved the composite mechanical and moisture resistance over the non-treated fiber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satyanarayana KG, Sukumaran K, Kulkarni AG, Pillai SGK, Rohatgi PK (1986) Compos 17:329–333

    Article  CAS  Google Scholar 

  2. Dittenber DB, Hota VS, Ganga R (2012) Compos Part A 43:1419–1429

    Article  Google Scholar 

  3. Furqan A, Choi HS, Park MK (2015) Macromol Mater Eng 300:10–24

    Article  Google Scholar 

  4. Lucintel, “Global Natural Fiber Composite Market 2015–2020: Trends, Forecast, and Opportunity Analysis” December 2015, Lucintel LLC, Irving, TX. USA

  5. Ticoalu A, Aravinthan T, Cardona F (2010) In Proceedings of the Southern Region Engineering Conference (SREC 2010) (pp. 113–117). Engineers. Australia

  6. Dweib MA, Hu B, O’donnell A, Shenton HW, Wool RP (2004) Compos Struct 63:147–157

    Article  Google Scholar 

  7. Alms JB, Yonko PJ, McDowell RC, Advani SG (2009) J Biobased Mater Bioenergy 3:181–187

    Article  CAS  Google Scholar 

  8. Libo Y, Kasal B, Huang L (2016) Compos Part B 92:94–132

    Article  Google Scholar 

  9. Hakamy AF, Shaikh UA, Low IM (2014) Cem Concr Compos 50:27–35

    CAS  Google Scholar 

  10. Alomayri TF, Shaikh UA, Low IM (2014) Compos Part B 60:36–42

    Article  CAS  Google Scholar 

  11. Libo Y, Chouw N (2013) Mater Des 51:629–640

    Article  Google Scholar 

  12. Libo Y, Chouw N (2013) Constr Build Mater 40:1118–1127

    Article  Google Scholar 

  13. Libo Y, Chouw N, Jayaraman K (2014) Compos Part B 56:296–317

    Article  Google Scholar 

  14. Bertomeu D, García-Sanoguera D, Fenollar O, Boronat T, Balart R (2012) Polym Compos 33:683–692

    Article  CAS  Google Scholar 

  15. Haq M, Burgueño R, Mohanty AK, Misra M (2008) Compos Sci Technol 68:3344–3351

    Article  CAS  Google Scholar 

  16. O’donnell A, Dweib MA, Wool RP (2004) Compos Sci Technol 64:1135–1145

    Article  Google Scholar 

  17. Dweib MA, Hu B, Shenton HW, Wool RP (2006) Compos Struct 74:379–388

    Article  Google Scholar 

  18. Rajan S (2015) Constr Build Mater 78:112–125

    Article  Google Scholar 

  19. Almusallam TH (2007) Compos Part B 38:629–639

    Article  Google Scholar 

  20. Wroblewski L, Hristozov D, Sadeghian P (2016) Constr Build Mater 126:800–811

    Article  CAS  Google Scholar 

  21. Liang H, Yan B, Yan L, Xu Q, Tan H, Kasal B (2016) Compos Part B 91:569–578

    Article  Google Scholar 

  22. Mahjoub R, Yatim JM, Sam AM, Zulkarnain NA, Raftari M. (2016) Mater Today Proc 3:459–463

    Article  Google Scholar 

  23. Hill CAS, Abdul Khalil HPS, Hale MD (1989) Ind Crops Prod 8:53–63

    Article  Google Scholar 

  24. Saheb DN, Jog JP (1999) Adv Polym Tech 18:351–363

    Article  CAS  Google Scholar 

  25. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  26. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Compos Part A 33:1083–1093

    Article  Google Scholar 

  27. Taslica B, Kusefoglu S (2010) J Appl Polym Sci 115:748–755

    Article  CAS  Google Scholar 

  28. Huber T, Müssig J (2008) Compos Interfaces 15:335–349

    Article  CAS  Google Scholar 

  29. Awal A, Cescutti G, Ghosh SB, Müssig J (2011) Compos Part A 42:50–56

    Article  Google Scholar 

  30. Torres FG, Cubillas ML (2005) Polym Test 24:694–698

    Article  CAS  Google Scholar 

  31. Libo Y, Chouw N (2015) Constr Build Mater 99:118–127

    Article  Google Scholar 

  32. Libo Y, Chouw N, Jayaraman K (2015) Mater Des 71:17–25

    Article  Google Scholar 

  33. El Messiry M (2013) Alex Eng J 52:301–306

    Article  Google Scholar 

  34. Batch GL, Cumiskey S, Macosko CW (2002) Poly Compos 23:307–318

    Article  CAS  Google Scholar 

  35. Melo JDD, Villena JEN (2012) J Reinf Plast Compos:0731684411433061

  36. Henstenburg RB, Phoenix SL (1989) Poly Compos 10:389–408

    Article  CAS  Google Scholar 

  37. Mwaikambo LY, Ansell MP (1999) Die Angewandte Makromolekulare Chemie 272:108–116

    Article  CAS  Google Scholar 

  38. Pupure L, Doroudgarian N, Joffe R (2014) Poly Compos 35:1150–1159

    CAS  Google Scholar 

  39. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) Express Polym Lett 2:413–422

    Article  CAS  Google Scholar 

  40. Li Y, Mai YW, Ye L (2000) Compos Sci Technol 60:2037–2055

    Article  CAS  Google Scholar 

  41. John MJ, Anandjiwala RD (2008) Poly Compos 29:187–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the the Natural Sciences and Engineering Research Council (NSERC), Canada-Discovery Grant (Project # 418729) for the financial support to carry out this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Cree.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loong, M.L., Cree, D. Enhancement of Mechanical Properties of Bio-Resin Epoxy/Flax Fiber Composites using Acetic Anhydride. J Polym Environ 26, 224–234 (2018). https://doi.org/10.1007/s10924-017-0943-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0943-3

Keywords

Navigation