Skip to main content
Log in

Mechanical, Dynamic Mechanical and Thermal Properties of Banana Fiber/Recycled High Density Polyethylene Biocomposites Filled with Flyash Cenospheres

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study presents the preparation of Natural fiber-reinforced biocomposites based on Recycled High Density Polyethylene (RHDPE)/Banana Fiber (BF)/Fly ash Cenospheres (FACS) and aims to increase the economic value of these waste materials. Maleic anhydride grafted HDPE (MA-g-HDPE) was used as a compatibilizer to increase the dispersion of fibers into the polymer matrix as well as to increase the compatibility between the matrix and fillers. Variation in mechanical, thermal and dynamic mechanical properties with the addition of FACS in RHDPE/BF composites was investigated. It was observed that 7.5 wt% FACS, 30 wt% BF and 3 wt% MA-g-HDPE within RHDPE matrix resulted in an increase in tensile strength to 17%, tensile modulus to 188%, flexural strength to 38%, flexural modulus to 159% and hardness to 37% as compared with the RHDPE matrix. Significant enhancement in the thermal stability of the RHDPE/BF biocomposites was also observed in presence of FACS under thermogravimetric analysis. The morphology of the prepared biocomposites has been examined by using scanning electron microscopy. Dynamic mechanical analysis tests revealed an increase in storage and loss modulus of the biocomposite system. The use of such recycled material, agricultural and industrial wastes increased the properties of the final product suggesting their use to be a good alternative in the production of polymeric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Satapathy S, Chattopadhyay S, Chakrabarty KK, Nag A, Tiwari KN, Tikku VK, Nando GB (2006) Studies on the effect of electron beam irradiation on waste polyethylene and its blends with virgin polyethylene. J Appl Polym Sci 101:715–726

    Article  CAS  Google Scholar 

  2. Jose J, Nag A, Nando GB (2010) Processing and characterization of recycled polypropylene and acrylonitrile butadiene rubber blends. J Polym Environ 18:155–166

    Article  CAS  Google Scholar 

  3. Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Res Phys 3:187–194

    Google Scholar 

  4. Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64:244–261

    Article  CAS  Google Scholar 

  5. Boopalan M, Niranjana M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos Part B 51:54–57

    Article  CAS  Google Scholar 

  6. Nayak SK, Mohanty S, Samal SK (2010) Influence of interfacial adhesion on the structural and mechanical behavior of PP-banana/glass hybrid composites. Polym Compos 31:1247–1257

    CAS  Google Scholar 

  7. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2010) Mechanical, thermal and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana fiber reinforced polypropylene composites. J Appl Polym Sci 117:1731–1740

    CAS  Google Scholar 

  8. Paul SA, Joseph K, Gem Mathew GD, Pothen LA, Thomas S (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos Part A 41:1380–1387

    Article  Google Scholar 

  9. Venkateshwaran N, Perumal AE, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behavior of banana/epoxy composite. Mater Design 47:151–159

    Article  CAS  Google Scholar 

  10. Benitez AN, Monzon MD, Angulo I, Ortega Z, Hernandez PM, Marrero MD (2013) Treatment of banana fiber for use in the reinforcement of polymeric matrices. Measurement 46:1065–1073

    Article  Google Scholar 

  11. Biswal M, Mohanty S, Nayak SK (2011) Effect of mercerized banana fiber on the mechanical and morphological characteristics of organically modified fiber-reinforced polypropylene nanocomposites. Polym-Plast Technol Eng 50:1458–1469

    Article  CAS  Google Scholar 

  12. Yildiz AB, Cetinkaya K (2012) Banana fiber and PET bottles waste reinforced polymer composites. UUJMS 1: 29–34

    CAS  Google Scholar 

  13. Pereira PHF, Benini KCCC, Watashi CY, Voorwald HJC, Cioffi MOH (2013) Characterization of high density polyethylene reinforced with banana peel fibers. Bioresources 8:2351–2365

    Google Scholar 

  14. Jandas PJ, Mohanty S, Nayak SK (2013) Mechanical properties of surface treated banana fiber/polylactic acid biocomposites: a comparative study of theoretical and experimental values. J Appl Polym Sci 127:4027–4038

    Article  CAS  Google Scholar 

  15. Khan GMA, Shams MSA, Kabir MdR, Gafur MA, Terano M, Alam MS (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low density polyethylene composites. J Appl Polym Sci 128:1020–1029

    Article  Google Scholar 

  16. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A 38:1664–1674

    Article  Google Scholar 

  17. Hemmasi AH, Ghasemi I, Bazyar B, Samariha A (2011) Influence of nanoclay on the physical properties of recycled high density polyethylene/bagasse nanocomposite. Middle East J Sci Res 8:648–651

    CAS  Google Scholar 

  18. Cui Y, Lee S, Noruziaan B, Cheung M, Tao J (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos Part A 39:655–661

    Article  Google Scholar 

  19. Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber reinforced high density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 28:63–72

    Article  CAS  Google Scholar 

  20. Favaro SL, Ganzerli TA, De Carvalho Neto AGV, Da silva ORRF, Radovanovic E (2010) Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high density polyethylene composites. Expr Polym Lett 4:465–473

    Article  CAS  Google Scholar 

  21. Oza S, Wang R, Lu N (2011) Thermal and mechanical properties of recycled high density polyethylene/hemp fiber composites. IJAST 1:31–36

    Google Scholar 

  22. Aht-Ong D, Atong, D, Pechven C (2011) Surface and mechanical properties of cellulose micro fiber reinforced recycle polyethylene film. Mater Sci Forum 695:469–472

    Article  CAS  Google Scholar 

  23. Fomenko EV, Anshits NN, Solovyov LA, Mikhaylova, OA, Anshits AG (2013) Composition and morphology of fly ash cenospheres from the combustion of Kuznetsk coal. Energy Fuels 27:5440–5448

    Article  CAS  Google Scholar 

  24. Deepthi MV, Madan S, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S (2010) Mechanical and thermal characteristics of high density polyethylene-fly ash cenospheres composites. Mater Design 31:2051–2060

    Article  CAS  Google Scholar 

  25. Chand N, Sharma P, Mahi F (2010) Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene. Mater Sci Eng A 527:5873–5878

    Article  Google Scholar 

  26. Satapathy S, Nando GB (2015) Mechanical, dynamic mechanical and thermal characterization of fly ash and nanostructured fly ash-waste polyethylene/high density polyethylene blend composites. Polym Compos DOI:10.1002/pc.23524

    Google Scholar 

  27. Kulkarni SM, Kishore (2003) Effect of filler-fiber interactions on compressive strength of fly ash and short fiber epoxy composites. J Appl Polym Sci 87:836–841

    Article  CAS  Google Scholar 

  28. Saxena M, Morchhale RK, Asokan P, Prasad BK (2008) Plant fiber-industrial waste reinforced polymer composites as a potential wood substitute material. J Compos Mater 42:367–384

    Article  CAS  Google Scholar 

  29. Subham P, Tiwari SK (2013) Effect of fly ash concentration and its surface modification on fiber reinforced epoxy composite′s mechanical properties. IJSER 4:1173–1180.

    Google Scholar 

  30. Jena H, Pandit MK, Pradhan AK (2013) Effect of cenosphere on mechanical properties of bamboo-epoxy composites. J Reinf Plas Compos 32:794–801

    Article  Google Scholar 

  31. Dalbehera S, Acharya SK (2015) Effect of cenosphere addition on the mechanical properties of jute-glass fiber hybrid epoxy composites. J Ind. Text DOI:10.1177/1528083715577936

    Google Scholar 

  32. Satapathy S, Raju VSK (2015) Influence of fly ash cenospheres on performance of coir fiber reinforced recycled high density polyethylene biocomposites. J Appl Polym Sci. DOI:10.1002/APP.42237

    Google Scholar 

  33. Nayak SK, Mohanty S, Samal SK (2010) Influence of interfacial adhesion on the structural and mechanical behavior of PP-banana/glass hybrid composite. Polym Compos 31:1247–1257

    CAS  Google Scholar 

  34. Nourbaksh A, Ashori A (2009) Preparation and properties of wood plastic composites made of recycled high density polyethylene. J Compos Mater 43:877–883

    Article  Google Scholar 

  35. Njoku RE, Li IO, Agbiogwu DO, Agu CV (2012) Effect of alkali treatment and fiber content variation on the tensile properties of coir fiber reinforced cashew nut shell liquid (CNSL) composite. NIJOTECH 31:107–110

    Google Scholar 

  36. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fiber Polym 12:919–926

    Article  CAS  Google Scholar 

  37. Bhagat VK, Biswas S, Dehury J (2014) Physical, mechanical and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym Compos 35:925–930

    Article  CAS  Google Scholar 

  38. Rozman HD, Tay GS, Kumar RN, Abubakar A, Ismail H, Mohd Ishak ZA (1999) Polypropylene hybrid composites: a preliminary study on the use of glass and coconut fiber as reinforcements in polypropylene composites. Polym Plas Technol Eng 38:997–1011

    Article  CAS  Google Scholar 

  39. Bettini SHP, Bicudo ABLC, Augusto IS, Antunes LA, Morassi PL, Condotta R, Bonse BC (2010) Investigation on the use of coir fiber as alternative reinforcement in polypropylene. J Appl Polym Sci 118:2841–2848

    Article  CAS  Google Scholar 

  40. Rana AK, Mandal A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibilizer, impact modifier and fiber loading. Compos Sci Technol 63:801–806

    Article  CAS  Google Scholar 

  41. Arsad A, Suradi NL, Rahmat AR, Danlami JM (2013) The influence of kenaf fiber as reinforcement on recycled polypropylene/recycled polyamide-6 composites. Int J Plas Technol 17:149–162

    Article  CAS  Google Scholar 

  42. Ishidi EY, Kolawale EG, Sunmonu KO, Yakubu MK, Adamu IK, Obele CM (2011) Study of physio-mechanical properties of high density polyethylene (HDPE)-palm kernel nut shell (Elaeis Guineasis) composites. JETEAS 2:1073–1078

    CAS  Google Scholar 

  43. Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites. Compos Sci Technol 65:563–569

    Article  CAS  Google Scholar 

  44. Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber reinforced polypropylene nanocomposites. J Appl Polym Sci 114:4091–4103

    Article  CAS  Google Scholar 

  45. Satapathy S, Nag A, Jose J, Nando GB (2008) Mechanical properties and fracture behavior of short PET fiber-waste polyethylene composites. J Reinf Plast Compos 27:967–984

    Article  CAS  Google Scholar 

  46. Tan C, Ahmad I, Heng M (2011) Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Mater design 32:4493–4501

    Article  CAS  Google Scholar 

  47. Satapathy S, Nag A, Nando GB (2013) HDPE-Fly ash/Nano fly ash composites. J Appl Polym Sci 130:4558–4567

    CAS  Google Scholar 

  48. Satapathy S, Nag A, Nando GB (2012) Effect of electron beam irradiation on the mechanical, thermal and dynamic mechanical properties of fly ash and nano structured fly ash waste polyethylene hybrid composites. Polym Compos 33:109–119

    Article  CAS  Google Scholar 

  49. Pardo SG, Bernal C, Area A, Abad MJ, Cano J (2010) Rheological, thermal and mechanical characterization of fly ash-thermoplastic composites with different coupling agents. Polym Compos 31:1722–1730

    Article  CAS  Google Scholar 

  50. Sreekanth MS, Bambole VA, Mhaske ST, Mahanwar PA (2009) Effect of particle size and concentration of fly ash on properties of polyester thermoplastic elastomer composites. JMMCE 8:237–248

    Article  Google Scholar 

  51. Ray D, Bhattacharya D, Mohanty AK, Drzal LT, Misra M (2006) Static and dynamic mechanical properties of vinylester resin matrix composites filled with fly ash. Macromol Mater Eng 291:784–792

    Article  CAS  Google Scholar 

  52. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  CAS  Google Scholar 

  53. Patel RV, Manocha S (2013) Studies on carbon-fly ash composites with chopped PANOX fibers. J Compos 2013:1–6

    Article  Google Scholar 

  54. Mattos BD, Misso AL, De Cademartori P HG, De Lima EA, Magalhaes WLE, Gatto DA (2014) Properties of polypropylene composites filled with a mixture of household waste of mate tea and wood particles. Constr Build Mater 61:60–68

    Article  Google Scholar 

  55. Ghasemi E, Kord B (2009) Long term water absorption behavior of polypropylene/wood flour/organoclay hybrid nanocomposite. Iranian Polym J 18:683–691

    CAS  Google Scholar 

  56. Nourbaksh A, Ashori A (2009) Influence of nanoclay and coupling agent on the physical and mechanical properties of polypropylene/bagasse nanocomposite. J Appl Polym Sci 112:1386–1390

    Article  Google Scholar 

  57. Satapathy S, Nag A, Nando GB (2009) Dynamic mechanical behavior of short PET and short glass fiber reinforced waste polyethylene composites. Int J Plas Technol 13:95–111

    Article  CAS  Google Scholar 

  58. Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66:538–547

    Article  CAS  Google Scholar 

  59. Subham P, Tiwari, SK (2012) Effect of unsilanized and silanized fly ash on damping properties of fly ash filled fiber reinforced epoxy composite. Proceedings of the international conference on advances in aeronautical and mechanical ENGINEERING-AME:20–24

  60. Khanna YP, Turi EA, Taylor TJ, Vickroy VV, Abbott RF (1985) Dynamic mechanical relaxations in polyethylene. Macromolecules 18:1302–1309

    Article  CAS  Google Scholar 

  61. Stehling FC, Mandelkern L (1970) The glass temperature of linear polyethylene. Macromolecules 3:242–252

    Article  CAS  Google Scholar 

  62. Behzad M, Tajvidi M, Ebrahimi G, Falk RH (2004) Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour-high density polyethylene composites. IJE Trans B 17:95–104

    Google Scholar 

Download references

Acknowledgements

Dr. Sukanya Satapathy, thanks Department of Science and Technology (DST) for financial grant under Women Scientists Scheme-A (WOS-A), Grant No. SR/WOS-A/CS-91/2012 (G). Authors greatly acknowledge Central Institute of Plastics Engineering and Technology, Hyderabad, India for the processing and Izod impact testing facility of the composite samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Satapathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S., Kothapalli, R.V.S. Mechanical, Dynamic Mechanical and Thermal Properties of Banana Fiber/Recycled High Density Polyethylene Biocomposites Filled with Flyash Cenospheres. J Polym Environ 26, 200–213 (2018). https://doi.org/10.1007/s10924-017-0938-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0938-0

Keywords

Navigation