Skip to main content
Log in

Development of value-added composites from recycled high-density polyethylene, jute fiber and flyash cenospheres: Mechanical, dynamic mechanical and thermal properties

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Composites were developed from post-consumer and industrial wastes: recycled high-density polyethylene (rHDPE) and jute fiber/flyash cenospheres (FACS). Variations in mechanical strength, storage modulus (E″), loss modulus (E′) and damping parameter (tan δ) with the addition of fiber/FACS into rHDPE in the presence of coupling agent maleic anhydride-grafted polyethylene (MAPE) were investigated. It was observed that the tensile strength and modulus, flexural strength and modulus as well as hardness of the composites increased significantly at 20 wt% fiber/10 wt% FACS/3 wt% MAPE with respect to rHDPE. Dynamic mechanical analysis data showed an increase in the storage and loss modulus of the both fiber/FACS-reinforced composites. The tan δ spectra presented a strong influence of fiber/FACS content and coupling agent on the α′ relaxation process of rHDPE. The thermal behavior of the composites was evaluated from TGA/DTG thermograms. The fiber/FACS/matrix morphology in the MAPE-treated composites was confirmed by SEM analysis of the tensile-fractured specimens. The results suggested successful development of value-added and low-cost polymeric composites from environmentally hazardous waste materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Satapathy S, Chattopadhyay S, Chakrabarty KK, Nag A, Tiwari KN, Tikku VK, Nando GB (2006) Studies on the effect of electron beam irradiation on waste polyethylene and its blends with virgin polyethylene. J Appl Polym Sci 101:715–726

    Article  CAS  Google Scholar 

  2. Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Defence Sci J 64:244–261

    Article  CAS  Google Scholar 

  3. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A Appl Sci Manufact 38:1664–1674

    Article  Google Scholar 

  4. Cui Y, Lee S, Noruziaan B, Cheung M, Tao J (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos Part A Appl Sci Manufact 39A:655–661

    Article  CAS  Google Scholar 

  5. Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber reinforced high density polyethylene composite: effect of fiber type and loading. Indus Crops Product 28:63–72

    Article  CAS  Google Scholar 

  6. Favaro SL, Ganzerli TA, De Carvalho Neto AGV, Da silva ORRF, Radovanovic E (2010) Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high density polyethylene composites. eXPRESS Polym Lett 4:465–473

    Article  CAS  Google Scholar 

  7. Oza S, Wang R, Lu N (2011) Thermal and mechanical properties of recycled high density polyethylene/hemp fiber composites. IJAST 1:31–36

    Google Scholar 

  8. Samariha A, Hemmasi AH, Ghasemi I, Bazyar B (2011) Short-term water absorption and thickness swelling behavior of recycled polyethylene reinforced with bagasse flour. MEJSR 8:971–974

    Google Scholar 

  9. Aht-Ong D, Atong D, Pechven C (2011) Surface and mechanical properties of cellulose micro fiber reinforced recycle polyethylene film. Mat Sci Forum 695:469–472

    Article  CAS  Google Scholar 

  10. Wang X, Cui Y, Zhang H, Xie B (2012) Effects of methyl methacrylate grafting and polyamide coating on the behavior and mechanical properties of jute fiber reinforced polypropylene composites. J Vinyl Addit Technol 18:113–119

    Article  Google Scholar 

  11. Zaman HU, Khan MA, Khan RA (2012) Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polym Compos 33:1077–1084

    Article  CAS  Google Scholar 

  12. Goriparthi BK, Suman KNS, Nalluri MR (2012) Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polym Compos 33:237–244

    Article  CAS  Google Scholar 

  13. Jahan A, Rahman MD, Kabir H, Kabir MA, Ahmed F, Hossain MA, Gafur MA (2013) Optical, electrical and thermal properties of jute and glass fiber reinforced LDPE composites. IJBAS 1:482–490

    Article  Google Scholar 

  14. Lovdal A, Laursen LL, Anderson TL, Madsen B, Mikkelsen LP (2013) Influence of temperature on mechanical properties of jute/biopolymer composites. J Appl Polym Sci 128:2038–2045

    CAS  Google Scholar 

  15. Khan JA, Khan MA, Islam R (2013) Mechanical, thermal and degradation properties of jute fabric-reinforced polypropylene composites: effect of potassium permanganate as oxidizing agent. Polym Compos 34:671–680

    Article  CAS  Google Scholar 

  16. Mina MF, Shohrawardy MHS, Khan MA, Alam AKMM, Beg MDH (2013) Improved mechanical performance of triple super phosphate treated jute-fabric reinforced polypropylene composites irradiated by gamma rays. J Appl Polym Sci 130:470–478

    Article  CAS  Google Scholar 

  17. Siddiquee KM, Helali MM (2014) Effects of fiber length and fiber ratio on the biodegradability of jute polymer composites. IJSER 2:64–69

    Google Scholar 

  18. Sayeed MMA, Rawal A, Onal L, Karaduman Y (2014) Mechanical properties of surface modified jute fiber/polypropylene nonwoven composites. Polym Compos 35:1044–1050

    CAS  Google Scholar 

  19. Gunti R, Ratna Prasad AV, Gupta AVSSKS (2016) Preparation and properties of successive alkali treated completely biodegradable short jute fiber reinforced PLA composites. Polym Compos 37:2160–2170

    Article  CAS  Google Scholar 

  20. Ranganathan N, Oksman K, Nayak SK, Sain M (2015) Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: effect on mechanical properties, morphology and fiber breakage. J Appl Polym Sci. https://doi.org/10.1002/app.41301

    Article  Google Scholar 

  21. Satapathy S, Raju VSK (2015) Influence of fly ash cenospheres on performance of coir fiber reinforced recycled high density polyethylene biocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.42237

    Article  Google Scholar 

  22. Satapathy S, Raju VSK (2018) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ. https://doi.org/10.1007/s10924-017-0938-0

    Article  Google Scholar 

  23. Kulkarni SM, Kishore (2003) Effect of filler-fiber interactions on compressive strength of fly ash and short fiber epoxy composites. J Appl Polym Sci 87:836–841

    Article  CAS  Google Scholar 

  24. Subham P, Tiwari SK (2013) Effect of fly ash concentration and its surface modification on fiber reinforced epoxy composite′s mechanical properties. IJSER 4:1173–1180

    Google Scholar 

  25. Saxena M, Morchhale RK, Asokan P, Prasad BK (2008) Plant fiber-industrial waste reinforced polymer composites as a potential wood substitute material. J Compos Mater 42:367–384

    Article  CAS  Google Scholar 

  26. Jena H, Pandit MK, Pradhan AK (2013) Effect of cenosphere on mechanical properties of bamboo-epoxy composites. J Reinf Plast Compos 32:794–801

    Article  Google Scholar 

  27. Dalbehera S, Acharya SK (2016) Effect of cenosphere addition on the mechanical properties of jute-glass fiber hybrid epoxy composites. J Ind Text 46:177–188

    Article  CAS  Google Scholar 

  28. Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  29. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12:919–926

    Article  CAS  Google Scholar 

  30. Njoku RE, Li IO, Agbiogwu DO, Agu CV (2012) Effect of alkali treatment and fiber content variation on the tensile properties of coir fiber reinforced cashew nut shell liquid (CNSL) composite. NIJOTECH 31:107–110

    Google Scholar 

  31. Supri AG, Aizat AE, Yazid MIM, Masturina M (2015) Chicken feather fibers-recycled high density polyethylene composites The effect of & #x03B5;-caprolactum. J Thermoplast Compos Mater 28:327–339

    Article  Google Scholar 

  32. Rozman HD, Tay GS, Kumar RN, Abubakar A, Ismail H, Ishak ZM (1999) Polypropylene hybrid composites: a preliminary study on the use of glass and coconut fiber as reinforcements in polypropylene composites. Polym-Plas Technol Eng 38:997–1011

    Article  CAS  Google Scholar 

  33. Nourbaksh A, Ashori A (2009) Preparation and properties of wood plastic composites made of recycled high density polyethylene. J Compos Mater 43:877–883

    Article  Google Scholar 

  34. Bhagat VK, Biswas S, Dehury J (2014) Physical, mechanical and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym Compos 35:925–930

    Article  CAS  Google Scholar 

  35. Agunsoy JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Result Phys 3:187–194

    Article  Google Scholar 

  36. Ishidi EY, Kolawale EG, Sunmonu KO, Yakubu MK, Adamu IK, Obele CM (2011) Study of physio-mechanical properties of high density polyethylene (HDPE)-palm kernel nut shell (Elaeis Guineasis) composites. JETEAS 2:1073–1078

    CAS  Google Scholar 

  37. Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66:538–547

    Article  CAS  Google Scholar 

  38. Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber reinforced polypropylene nanocomposites. J Appl Polym Sci 114:4091–4103

    Article  CAS  Google Scholar 

  39. Satapathy S, Nag A, Nando GB (2013) HDPE-Fly ash/Nano fly ash composites. J Appl Polym Sci 130:4558–4567

    CAS  Google Scholar 

  40. Satapathy S, Nag A, Nando GB (2012) Effect of electron beam irradiation on the mechanical, thermal and dynamic mechanical properties of fly ash and nano structured fly ash waste polyethylene hybrid composites. Polym Compos 33:109–119

    Article  CAS  Google Scholar 

  41. Sengupta S, Maity P, Ray D, Mukhpadhyay A (2013) Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: structural, mechanical and thermal characterizations. J Appl Polym Sci 130:1996–2004

    Article  CAS  Google Scholar 

  42. Pardo SG, Bernal C, Area A, Abad MJ, Cano J (2010) Rheological, thermal and mechanical characterization of flyash-thermoplastic composites with different coupling agents. Polym Compos 31:1722–1730

    Article  CAS  Google Scholar 

  43. Sreekanth MS, Bambole VA, Mhaske ST, Mahanwar PA (2009) Effect of particle size and concentration of flyash on properties of polyester thermoplastic elastomer composites. JMMCE 8:237–248

    Article  Google Scholar 

  44. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinforc Plast Compos 28:1169–1189

    Article  CAS  Google Scholar 

  45. Patel RV, Manocha S (2013) Studies on carbon-flyash composites with chopped PANOX fibers. J Compos 2013:1–7

    Article  Google Scholar 

  46. Subham P, Tiwari SK (2012) Effect of unsilanized and silanized fly ash on damping properties of fly ash filled fiber reinforced epoxy composite. In: Proceedings of the international conference on advances in aeronautical and mechanical engineering-AME, pp 20–24

  47. Behzad M, Tajvidi M, Ebrahimi G, Falk RH (2004) Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour-high density polyethylene composites. IJE Trans B Appl 17:95–104

    Google Scholar 

  48. Ray D, Sarkar BK, Basak RK, Rana AK (2004) Thermal behaviour of vinyl ester resin matrix composites reinforced with alkali treated jute fibers. J Appl Polym Sci 94:123–129

    Article  CAS  Google Scholar 

  49. Saw SK, Sarkhel G, Choudhury A (2012) A Effect of layering pattern on the physical, mechanical and thermal properties of jute/bagasse hybrid fiber-reinforced epoxy novolac composites. Polym Compos 33:1824–1831

    Article  CAS  Google Scholar 

  50. Sarkhel G, Choudhury A (2008) Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. J Appl Polym Sci 108:3442–3453

    Article  CAS  Google Scholar 

  51. Sengupta S, Ray D, Mukhopadhyay A (2013) Sustainable materials: value added composites from recycled polypropylene and fly ash using a green coupling agent. ACS Sustain Chem Eng 1:574–584

    Article  CAS  Google Scholar 

  52. Mattos BD, Misso AL, De Cademartori PHG, De Lima EA, Magalhaes WLE, Gatto DA (2014) Properties of polypropylene composites filled with a mixture of household waste of mate tea and wood particles. Constr Build Mater 61:60–68

    Article  Google Scholar 

  53. Ghasemi I, Kord B (2009) Long term water absorption behavior of polypropylene/wood flour/organoclay hybrid nanocomposite. Iran Polym J 18:683–691

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Sukanya Satapathy thanks Department of Science and Technology (DST) for financial grant under Women Scientists Scheme-A (WOS-A), Grant No. SR/WOS-A/CS-36/2016 (G). Author greatly acknowledges Central Institute of Plastics Engineering and Technology, Hyderabad, India, for the processing and izod impact testing facility for the composite samples. Author also greatly acknowledges Dr K V S N Raju and Dr. T Shekharam of Polymers and Functional Materials Division for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Satapathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S. Development of value-added composites from recycled high-density polyethylene, jute fiber and flyash cenospheres: Mechanical, dynamic mechanical and thermal properties. Int J Plast Technol 22, 386–405 (2018). https://doi.org/10.1007/s12588-018-9211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-018-9211-1

Keywords

Navigation