Skip to main content
Log in

Magnetic Cr(VI) Ion Imprinted Polymer for the Fast Selective Adsorption of Cr(VI) from Aqueous Solution

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel magnetic Cr(VI) ion imprinted polymer (Cr(VI)-MIIP) was successfully synthesized and used as a selective sorbent for the adsorption of Cr(VI) ions from aqueous solution. It can be synthesized through the combination of an imprinting polymer and magnetic nanoparticles. The high selectivity achieved using MIIP is due to the specific recognition cavities for Cr(VI) ions created in Cr(VI)-MIIP. Also, the magnetic properties that could be obtained using magnetic nanoparticles, helps to separate adsorbent with an external magnetic field without either additional centrifugation or filtration procedures. The magnetic Fe3O4 nanoparticles (MNPs) were synthesized using an improved co-precipitation method and modified with tetraethylorthosilicate (TEOS) before imprinting. The magnetic Cr(VI) ion imprinted polymer was prepared through precipitation copolymerization of 4-vinylpyridine as the complexing monomer, 2-hydroxyethyl methacrylate as a co-monomer, the Cr6+ anion as a template, and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the presence of modified magnetite nanoparticles. This novel synthesized sorbent was characterized using different techniques. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity, and reusability. The results showed that the maximum adsorption capacity was 39.3 mg g−1, which was observed at pH 3 and at 25 °C. The equilibrium time was 20 min, and the amount of adsorbent which gave the maximum adsorption capacity was 1.7 g L−1. Isotherm studies showed that the adsorption equilibrium data were fitted well with the Langmuir adsorption isotherm model and the theoretical maximum adsorption capacity was 44.86 mg g−1. The selectivity studies indicated that the synthesized sorbent had a high single selectivity sorption for the Cr(VI) ions in the presence of competing ions. Thermodynamic studies revealed that the adsorption process was exothermic (\(\Delta H\) < 0) and spontaneous (\(\Delta G\) < 0). In addition, the spent MIIP can be regenerated up to five cycles without a significant decrease in adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kot A, Namiesnèik J (2000) Trends Anal Chem 19:69

    Article  CAS  Google Scholar 

  2. Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Water Air Soil Pollut 200:59

    Article  CAS  Google Scholar 

  3. Testa JJ, Grela MA, Litter MI (2004) Environ Sci Technol 38:1589

    Article  CAS  Google Scholar 

  4. Xing YQ, Chen XM, Wang DH (2007) Environ Sci Technol 41:1439

    Article  CAS  Google Scholar 

  5. Mohan D, Pittman Jr. CU (2006) J Hazard Mater B 137:762

    Article  CAS  Google Scholar 

  6. Dubey SP, Gopal K (2007) J Hazard Mater 145:465

    Article  CAS  Google Scholar 

  7. Kozlowski CA, Walkowiak W (2002) Water Res 36:4870

    Article  CAS  Google Scholar 

  8. Sun JM, Li F, Huang JC (2006) Ind Eng Chem Res 45:1557

    Article  CAS  Google Scholar 

  9. Clevenger T, Novak JT (1983) J Water Pollut Control Fed 55:984

    CAS  Google Scholar 

  10. Fraser BG, Pritzker MD (1994) Sep Sci Technol 29:2097

    Article  CAS  Google Scholar 

  11. Ouk SK, Neufeld RD (1997) J Chem Technol Biotechnol 70:3

    Article  Google Scholar 

  12. Mohanty K, Jha M, Meikap BC, Biswas MN (2006) Chem Eng J 117:71

    Article  CAS  Google Scholar 

  13. Yang J, Yu M, Qiu T (2014) J Ind Eng Chem 20:480

    Article  CAS  Google Scholar 

  14. Lu Y, Yan CL, Gao SY (2009) Appl Surf Sci 255:6061

    Article  CAS  Google Scholar 

  15. Araki K, Maruyama T, Kamiya N, Goto M (2005) J Chromatogr B 818:141

    Article  CAS  Google Scholar 

  16. Singh DK, Mishra S (2009) J Hazard Mater 164:1547

    Article  CAS  Google Scholar 

  17. Hoai NT, Yoo DK, Kim D (2010) J Hazard Mater 173:462

    Article  CAS  Google Scholar 

  18. Srividya K, Mohanty K (2009) Chem Eng J 155:666

    Article  CAS  Google Scholar 

  19. Arica MY, Bayramoglu G (2005) Colloids Surf A 253:203

    Article  CAS  Google Scholar 

  20. Chen L, Wang X, Lu W, Wu X, Li J (2016) Chem Soc Rev 45:2137

    Article  CAS  Google Scholar 

  21. Özcan AA, Demirli Ş (2014) Sep Sci Technol 49:74

    Article  Google Scholar 

  22. Chen L, Xu S, Li J (2011) Chem Soc Rev 40:2922

    Article  CAS  Google Scholar 

  23. Ahmadi SJ, Noori KO, Shirvani AS (2010) J Hazard Mater 175:193

    Article  CAS  Google Scholar 

  24. Andac M, Özyapı E, Senel S, Say R, Denizli A (2006) Ind Eng Chem Res 45:1780

    Article  CAS  Google Scholar 

  25. Cai X, Li J, Zhang Z, Yang F, Dong R, Chen L (2014) ACS Appl Mater Interfaces 6:305

    Article  CAS  Google Scholar 

  26. Xu S, Chen L, Li L, Guan Y, Lu H (2012) J Hazard Mater 237–238:347

    Article  Google Scholar 

  27. Fu J, Chen L, Li J, Zhang Z (2015) J Mater Chem A 3:13598

    Article  CAS  Google Scholar 

  28. Lee SC, Patil UM, Kim SJ, Ahn S, Kang SW, Jun SC (2016) RSC Adv 6:44087

    Article  Google Scholar 

  29. Birlik E, Buyuktiryaki S, Ersoz A, Say R, Denizli A (2006) Sep Sci Technol 41:3109

    Article  CAS  Google Scholar 

  30. Gao BJ, Wang J, An FQ, Liu Q (2008) Polymer 49:1230

    Article  CAS  Google Scholar 

  31. Ebrahimzadeh H, Moazzen E, Amini MM, Sadeghi O (2013) Chem Eng J 315:215

    Google Scholar 

  32. Liu Y, Liu Z, Gao J, Dai J, Han J, Wang Y, Xie J, Yan Y (2011) J Hazard Mater 186:197

    Article  CAS  Google Scholar 

  33. An FQ, Gao BJ, Feng XQ (2008) J Hazard Mater 157:286

    Article  CAS  Google Scholar 

  34. Ren YM, Wei XZ, Zhang ML (2008) J Hazard Mater 158:14

    Article  CAS  Google Scholar 

  35. Zhao YG, Shen H, Pan SH, Hu M (2010) J Hazard Mater 182:295

    Article  CAS  Google Scholar 

  36. Chen L, Liu J, Zeng Q, Wang H, Yu A, Zhang H, Ding L (2009) J Chromatogr A 1216:3710

    Article  CAS  Google Scholar 

  37. Zhang ML, Zhang ZH, Liu YN, Yang X, Luo LJ, Chen JT, Yao SZ (2011) Chem Eng J 178:443

    Article  CAS  Google Scholar 

  38. Li J, Dong R, Wang X, Xiong H, Xu S, Shen D, Song X, Chen L (2015) RSC Adv 5:10611

    Article  CAS  Google Scholar 

  39. Pakade V, Cukrowska E, Darkwa J, Torto N, Chimuka L (2011) Water SA 37:529

    CAS  Google Scholar 

  40. Bayramoglu G, Arica MY (2011) J Hazard Mater 187:213

    Article  CAS  Google Scholar 

  41. Marjanović V, Lazarević S, Janković-Častvan I, Potkonjak B, Janaćković Ð, Petrović R (2011) Chem Eng J 166:198

    Article  Google Scholar 

  42. Duranoğlu D, Kaya IGB, Beker U, Filiz SB (2012) Chem Eng J 181–182:103

    Article  Google Scholar 

  43. Tavengwa NT, Cukrowska E, Chimuka L (2013) Talanta 116:670

    Article  CAS  Google Scholar 

  44. Faraji M, Yamini Y, Tahmasbi E, Saleh A, Nourmohammadian F (2010) J Iran Chem Soc 7:130

    Article  Google Scholar 

  45. Prasanna Kumar Y, King P, Prasad VSRK (2007) Chem Eng J 129:161

    Article  Google Scholar 

  46. Azizian S (2004) J Colloid Interface Sci 276:47

    Article  CAS  Google Scholar 

  47. Ho YS, McKay G (1998) Chem Eng J 70:115

    Article  CAS  Google Scholar 

  48. Langmuir I (1918) J Am Chem Soc 40:1361

    Article  CAS  Google Scholar 

  49. Freundlich HMF (1906) Z Phys Chem 57:385

    CAS  Google Scholar 

  50. Webi TW, Chakravort RK (1974) AIChE J 20:228

    Article  Google Scholar 

  51. Wang XS, Chen LF, Li FY, Chen KL, Wan WY (2010) J Hazard Mater 175:816

    Article  CAS  Google Scholar 

  52. Xing GX, Zhang SF, Ju BZ, Yang JZ (2006) Carbohydr Polym 66:246

    Article  CAS  Google Scholar 

  53. Cheng RM, Ou SJ, Xiang B, Li YJ, Liao QQ (2009) J Polym Res 16:703

    Article  CAS  Google Scholar 

  54. Bayramoglu G, Arica MY (2005) Sep Purif Technol 45:192

    Article  CAS  Google Scholar 

  55. Huang GL, Shi JX, Langrish TAG (2009) Chem Eng J 152:434

    Article  CAS  Google Scholar 

  56. Liu W, Zhang J, Zhang C, Wang Y, Li Y (2010) Chem Eng J 162:677

    Article  CAS  Google Scholar 

  57. Janos P, Hula V, Bradnova P, Pilarova V, Sedlbauer J (2009) Chemosphere 75:732

    Article  CAS  Google Scholar 

  58. Hu J, Chen GH, Lo IMC (2005) Water Res 39:4528

    Article  CAS  Google Scholar 

  59. Li H, Li Z, Liu T, Xiao X, Peng Z, Deng L (2008) Bioresour Technol 99:6271

    Article  CAS  Google Scholar 

  60. Lv X, Xu J, Jiang G, Tang J, Xu X (2012) J Colloid Interface Sci 369:460

    Article  CAS  Google Scholar 

  61. Tan T, He X, Du W (2001) J Chem Technol Biotechnol 76:191

    Article  CAS  Google Scholar 

  62. Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H (2010) J Hazard Mater 184:126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Iranian Nanotechnology Initiative Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Taghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, S., Taghizadeh, M. & Yamini, Y. Magnetic Cr(VI) Ion Imprinted Polymer for the Fast Selective Adsorption of Cr(VI) from Aqueous Solution. J Polym Environ 26, 101–115 (2018). https://doi.org/10.1007/s10924-016-0929-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0929-6

Keywords

Navigation