Skip to main content

Advertisement

Log in

Modification of Thermo-Mechanical Properties of Recycled PET by Vinyl Acetate (VAc) Monomer Grafting Using Gamma Irradiation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25 % to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83 %. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95 °C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lorenzetti C, Manaresi P, Berti C, Barbiroli G (2006) Chemical recovery of useful chemicals from polyester (PET) waste for resource conservation: a survey of state of the art. J Environ Polym Degr 14(1):89–101

    Article  CAS  Google Scholar 

  2. Deng X, Nikiforov AY, Coenye T, Cools P, Aziz G, Morent R, De Geyter N, Leys C. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Scientific reports. 2015 May 7;5

  3. Foolmaun RK, Ramjeeawon T. Comparative life cycle assessment and social life cycle assessment of used polyethylene terephthalate (PET) bottles in Mauritius. The International Journal of Life Cycle Assessment. 2013 Jan 1;18(1):155–71.

    Article  CAS  Google Scholar 

  4. Al-Jabareen A, Al-Bustami H, Harel H, Marom G. Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. Journal of Applied Polymer Science. 2013 May 5;128(3):1534–9.

    CAS  Google Scholar 

  5. Tasić A, Rusmirović JD, Nikolić J, Božić A, Pavlović V, Marinković AD, Uskoković PS. Effect of the vinyl modification of multi-walled carbon nanotubes on the performances of waste poly (ethylene terephthalate)-based nanocomposites. Journal of Composite Materials. 2016 May 13:0021998316648757.

  6. Wang D, Zhu J, Yao Q, Wilkie CA (2002) A comparison of various methods for the preparation of polystyrene and poly (methyl methacrylate) clay nanocomposites. Chem Mater 14(9):3837–3843

    Article  CAS  Google Scholar 

  7. Hwang S-H, Paeng S-W, Kim J-Y, Huh W, Lee S-W (2003) Synthesis of allylester resin tethered to layered silicates by in-situ polymerization and its nanocomposite. Polym Bull 49(5):329–335

    Article  CAS  Google Scholar 

  8. Gupta V, Bashir Z. PET Fibers, Films, and Bottles: Sect. 5–7. Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends, and Composites. 2005:362–88.

  9. Pegoretti A, Kolarik J, Slouf M (2009) Phase structure and tensile creep of recycled poly (ethylene terephthalate)/short glass fibers/impact modifier ternary composites. Express Polym Lett 3:235–244

    Article  CAS  Google Scholar 

  10. Sinha V, Patel MR, Patel JV (2010) PET waste management by chemical recycling: a review. J Environ Polym Degr 18(1):8–25

    Article  CAS  Google Scholar 

  11. Thakur V, Singha A, Thakur M (2012) Graft copolymerization of methyl acrylate onto cellulosic biofibers: Synthesis, characterization and applications. J Environ Polym Degr 20(1):164–174

    Article  CAS  Google Scholar 

  12. Tajvidi M, Takemura A (2010) Recycled natural fiber polypropylene composites: water absorption/desorption kinetics and dimensional stability. J Environ Polym Degr 18(4):500–509

    Article  CAS  Google Scholar 

  13. Yussuf A, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Environ Polym Degr 18(3):422–429

    Article  CAS  Google Scholar 

  14. Thakur VK, Singha AS, Mehta IK (2010) Renewable resource-based green polymer composites: Analysis and characterization. Int J Polym Anal Charact 15(3):137–146

    Article  CAS  Google Scholar 

  15. Gupta A, Kumar V, Sharma M (2010) Formulation and Characterization of Biodegradable Packaging Film Derived from Potato Starch & LDPE Grafted with Maleic Anhydride—LDPE Composition. J Environ Polym Degr 18(4):484–491

    Article  CAS  Google Scholar 

  16. Gupta A, Sharma M (2010) Characterization of biodegradable packaging films derived from potato starch and LDPE grafted with maleic anhydride–LDPE composition. Part-II. J Environ Polym Degr 18(4):492–499

    Article  CAS  Google Scholar 

  17. Singha AS, Thakur VK (2009) Morphological, thermal, and physicochemical characterization of surface modified pinus fibers. Int J Polym Anal Charact 14(3):271–289

    Article  CAS  Google Scholar 

  18. Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122(1):532–544

    Article  CAS  Google Scholar 

  19. Singha AS, Shama A, Thakur VK (2008) X-ray diffraction, morphological, and thermal studies on methylmethacrylate graft copolymerized Saccharum ciliare fiber. Int J Polym Anal Charact 13(6):447–462

    Article  CAS  Google Scholar 

  20. Azizinejad F, Talu M, Abdouss M, Shabani M (2005) An investigation of the grafting of acrylic acid/methyl methacrylate mixture onto poly (ethylene terephthalate) fibres. Iran Polym J 14(1):33–38

    CAS  Google Scholar 

  21. Gupta B, Mishra S, Saxena S (2008) Preparation of thermosensitive membranes by radiation grafting of acrylic acid/N-isopropyl acrylamide binary mixture on PET fabric. Radiation physics chemistry 77(5):553–560

    Article  CAS  Google Scholar 

  22. Sacak M, Sertkaya F, Talu M (1992) Grafting of poly (ethylene terephthalate) fibers with methacrylic acid using benzoyl peroxide. J Appl Polym Sci 44(10):1737–1742

    Article  CAS  Google Scholar 

  23. Rahman N, Sato N, Sugiyama M, Hidaka Y, Okabe H, Hara K (2014) The effect of hot DMSO treatment on the γ-ray-induced grafting of acrylamide onto PET films. Polymer journal 46(7):412–421

    Article  CAS  Google Scholar 

  24. Singh N, Bridges AW, García AJ, Lyon LA (2007) Covalent tethering of functional microgel films onto poly (ethylene terephthalate) surfaces. Biomacromolecules 8(10):3271–3275

    Article  CAS  Google Scholar 

  25. Gupta B, Grover N, Singh H (2009) Radiation grafting of acrylic acid onto poly (ethylene terephthalate) fabric. J Appl Polym Sci 112(3):1199–1208

    Article  CAS  Google Scholar 

  26. Azizinezhad F (2014) Kinetic Investigation of Grafting of Acrylamide/2-Hydroxypropyl Methacrylate Mixture onto Poly (Ethylene Terephthalate) Fibers. Bull Env Pharmacol. Life Sci 3:176–183

    Google Scholar 

  27. Tuhin MO, Rahman N, Haque M, Khan RA, Dafader N, Islam R et al (2012) Modification of mechanical and thermal property of chitosan–starch blend films. Radiation physics chemistry 81(10):1659–1668

    Article  CAS  Google Scholar 

  28. Alam R, Khan MA, Khan RA, Ghoshal S, Mondal M (2008) Study on the physico-mechanical properties of photo-cured chitosan films with oligomer and acrylate monomer. J Environ Polym Degr 16(3):213–219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khandoker S. Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubna, M.M., Salem, K.S., Sarker, M. et al. Modification of Thermo-Mechanical Properties of Recycled PET by Vinyl Acetate (VAc) Monomer Grafting Using Gamma Irradiation. J Polym Environ 26, 83–90 (2018). https://doi.org/10.1007/s10924-016-0922-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0922-0

Keywords

Navigation