Skip to main content

Advertisement

Log in

Influence of Chain Extension and Blending on Crystallinity and Morphological Behavior of Recycled-PET/Ethylene Vinyl Acetate Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) recycling is investigated in this work. PET is a polymer in which hydrolytic degradation of polymeric chains occurs during thermomechanical reprocessing. This kind of processing yields poor melt strength and low viscosity for recycled polyethylene terephthalate (RPET). The chain extension effect of pyromellitic dianhydride (PMDA) on phase morphology and crystallinity of the RPET and polyethylene vinyl acetate (EVA) blends is verified or the first time including crystallization, thermal behavior and morphologies of the blended samples. First, RPET/EVA blends were prepared with 90/10, 70/30 and 60/40 weight ratio in an internal mixer. Pure RPET and virgin PET (VPET) were also reprocessed for comparison. Samples of RPET/EVA, VPET/EVA, RPET/EVA/PMDA and VPET/EVA/PMDA were examined using RPET (or VPET)/EVA = 60/40 (w/w) and 0.5% for PMDA. Both XRD and DSC tests revealed that PMDA and EVA reduce the rate and degree of crystallinity in PET, however, PMDA and PET increase both rate and degree of crystallinity in EVA. SEM images also illustrated RPET/EVA blend to be in co-continuous morphology while adding 0.5 wt% PMDA to the blend changes the structure to microfibrillar matrix-disperse state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ignatyev IA, Thielemans W, Vander Beke B (2014) Recycling of polymers: a review. ChemSusChem 7:1579–1593

    Article  CAS  Google Scholar 

  2. Driedger AGJ, Dürr HH, Mitchell K, Van Cappellen P (2015) Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41(1):9–19

    Article  CAS  Google Scholar 

  3. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  Google Scholar 

  4. Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25:53–64

    Article  Google Scholar 

  5. Achilias DS, Tsintzou GP, Nikolaidis AK, Bikiaris DN, Karayannidis GP (2011) Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Polym Int 60:500–506

    Article  CAS  Google Scholar 

  6. RK Padhan, Sreeram A (2019) Chemical depolymerization of PET bottles via combined chemolysis methods. Plastics Design Library, pp 135–147

  7. Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529

    Article  CAS  Google Scholar 

  8. Hongsriphan N, Samangain S, Siriteeraphan Y, Yangcheepyuenyoodee N (2019) Poly(butylene succinate) and recycled poly (ethylene terephthalate) blends adding gma as compatibilizer: mechanical properties and chemical resistance to household chemicals. Key Eng Mater 798:291–297

    Article  Google Scholar 

  9. Vidales JMM, Hernández LN, López JIT, Flores EEM, Hernández LS (2014) Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Constr Build Mater 65:376–383

    Article  Google Scholar 

  10. Du S, Valla JA, Parnas RS, Bollas GM (2016) Conversion of polyethylene terephthalate based waste carpet to benzene-rich oils through thermal, catalytic, and catalytic steam pyrolysis. ACS Sustain Chem Eng 4:2852–2860

    Article  CAS  Google Scholar 

  11. Ren J, Dyosiba X, Musyoka NM, Langmi HW, North BC, Mathe M, Onyango MS (2016) Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications. Int J Hydrogen Energy 41:18141–18146

    Article  CAS  Google Scholar 

  12. Wang ZG, Xi WH, Zhou JB, Xu JM, Li G (2016) Preparation and properties of recycled PET fibers filled polyethylene composites. Mater Sci Forum 848:89–93

    Article  Google Scholar 

  13. Wei L, Yan N, Chen Q (2010) Converting poly (ethylene terephthalate) waste into carbon microspheres in a supercritical CO2 system. Environ Sci Technol 45(2):534–539

    Article  Google Scholar 

  14. Amaro LP, Coiai S, Ciardelli F, Passaglia E (2015) Preparation and testing of a solid secondary plasticizer for PVC produced by chemical degradation of post-consumer PET. Waste Manage 46:68–75

    Article  CAS  Google Scholar 

  15. Ruj B, Pandey V, Jash P, Srivastava VK (2015) Sorting of plastic waste for effective recycling. Int J Appl Sci Eng Res 4(4):564–571

    CAS  Google Scholar 

  16. Park CL, Yang YC, Kim JA, Suh IK, Jang DS, Raw material sorting apparatus and method therefor. U.S. Patent No. 9,700,899. 11 July 2017

  17. Ruj B, Pandey V, Jash P, Srivastava VK (2015) Sorting of plastic waste for effective recycling. Int J Appl Sci Eng Res 4:564–571

    CAS  Google Scholar 

  18. Sinha V, Patel MR, Patel JV (2010) Pet waste management by chemical recycling: a review. J Polym Environ 18:8–25

    Article  CAS  Google Scholar 

  19. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage 29:2625–2643

    Article  CAS  Google Scholar 

  20. Dal Lago E, Boaretti C, Piovesan F, Roso M, Lorenzetti A, Modesti M (2019) The effect of different compatibilizers on the properties of a post-industrial PC/PET blend. Materials 12(1):49

    Article  CAS  Google Scholar 

  21. Ge Y, Yao S, Xu M, Gao L, Fang Z, Zhao L, Liu T (2019) Improvement of poly(ethylene terephthalate) melt-foamability by long-chain branching with the combination of pyromellitic dianhydride and triglycidyl isocyanurate. Ind Eng Chem Res 58(9):3666–3678

    Article  CAS  Google Scholar 

  22. Nofar M, Oğuz H (2019) Development of PBT/recycled-PET blends and the influence of using chain extender. J Polym Environ 27(7):1404–1417

    Article  CAS  Google Scholar 

  23. Wang K, Qian J, Lou F, Yan W, Wu G, Guo W (2017) The effects of two-step reactive processing on the properties of recycled poly(ethylene terephthalate). Polym Bull 74:2479–2496

    Article  CAS  Google Scholar 

  24. Gouissem L, Douibi A, Benachour D (2014) The evolution of properties of recycled poly(ethylene terephthalate) as function of chain extenders, the extrusion cycle and heat treatment. Polym Sci Ser A 56:844–855

    Article  CAS  Google Scholar 

  25. Kruse M, Wagner MH (2017) Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate). Rheol Acta 56:887–904

    Article  CAS  Google Scholar 

  26. Tan Z, Liu S, Cui X, Sun S, Zhang H (2016) Application of macromolecular chain extender and contribution to the toughening of poly(ethylene terephthalate). J Thermoplast Compos Mater 29(6):833–849

    Article  CAS  Google Scholar 

  27. Tapia JJB, Valdez MH, Cortez JC, García VMD, Barrios HL (2018) Improving the rheological and mechanical properties of recycled PET modified by macromolecular chain extenders synthesized by controlled radical polymerization. J Polym Environ 26(11):4221–4232

    Article  Google Scholar 

  28. Tapia JJB, Tenorio-López JA, Martínez-Estrada A, Guerrero-Sánchez C (2019) Application of RAFT-synthesized reactive tri-block copolymers for the recycling of post-consumer R-PET by melt processing. Mater Chem Phys 229:474–481

    Article  Google Scholar 

  29. Karsli NG (2017) A study on the fracture, mechanical and thermal properties of chain extended recycled poly(ethylene terephthalate). J Thermoplast Compos Mater 30:1157–1172

    Article  CAS  Google Scholar 

  30. Makkam S, Harnnarongchai W (2014) Rheological and mechanical properties of recycled PET modified by reactive extrusion. Energy Procedia 56:547–553

    Article  CAS  Google Scholar 

  31. Raffa P, Coltelli M-B, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di-and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72(1):50–60

    Article  CAS  Google Scholar 

  32. Li G, Yang SL, Jiang JM, Wu CX (2005) Crystallization characteristics of weakly branched poly(ethylene terephthalate). Polymer 46(24):11142–11148

    Article  CAS  Google Scholar 

  33. Duarte IS, Tavares AA, Lima PS, Andrade DLACS, Carvalho LH, Canedo EL, Silva SML (2016) Chain extension of virgin and recycled poly(ethylene terephthalate): effect of processing conditions and reprocessing. Polym Degrad Stab 124:26–34

    Article  CAS  Google Scholar 

  34. Zhang Y, Guo W, Zhang H, Wu C (2009) Influence of chain extension on the compatibilization and properties of recycled poly(ethylene terephthalate)/linear low density polyethylene blends. Polym Degrad Stab 94:1135–1141

    Article  CAS  Google Scholar 

  35. Awaja F, Daver F, Kosior E, Cser F (2004) The effect of chain extension on the thermal behaviour and crystallinity of reactive extruded recycled pet. J Therm Anal Calorim 78:865–884

    Article  CAS  Google Scholar 

  36. You X, Snowdon MR, Misra M, Mohanty AK (2018) Biobased poly(ethylene terephthalate)/poly(lactic acid) blends tailored with epoxide compatibilizers. ACS Omega 3(9):11759–11769

    Article  CAS  Google Scholar 

  37. Lin GL, Li DW, Liu MY, Zhang XY, Zheng YY (2018) Rheological behavior, mechanical properties, and nonisothermal crystallization behavior of poly(ethylene terephthalate)/modified carbon fiber composites. High Perform Polym 31(6):733–740

    Article  Google Scholar 

  38. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43(14):3873–3878

    Article  CAS  Google Scholar 

  39. Riga AT, Judovits L (2001) Materials characterization by dynamic and modulated thermal analytical techniques, ASTM

  40. Fakirov S, Bhattacharyya D, Lin RJT, Fuchs C, Friedrich K (2007) Contribution of coalescence to microfibril formation in polymer blends during cold drawing. J Macromol Sci B 46(1):183–194

    Article  CAS  Google Scholar 

  41. Fakirov S (2013) Nano-/microfibrillar polymer—polymer and single polymer composites: the converting instead of adding concept. Compos Sci Technol 89:211–225

    Article  CAS  Google Scholar 

  42. Jayanarayanan K, Thomas S, Joseph K (2011) In situ microfibrillar blends and composites of polypropylene and poly(ethylene terephthalate): morphology and thermal properties. J Polym Res 18:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude from Research Organization of the Sahand University of Technology for the supports and equipment and also partial financial aids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Pourabbas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghanlou, S., Khamseh, M., Razavi Aghjeh, M. et al. Influence of Chain Extension and Blending on Crystallinity and Morphological Behavior of Recycled-PET/Ethylene Vinyl Acetate Blends. J Polym Environ 28, 1526–1533 (2020). https://doi.org/10.1007/s10924-020-01699-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01699-7

Keywords

Navigation