Skip to main content
Log in

Properties of Glauconite/Polyaniline Composite Prepared in Aqueous Solution of Citric Acid

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hybrid composite made of glauconite and polyaniline was prepared in aqueous solution of citric acid. Scanning electron microscopy combined with energy dispersive X-ray analysis shows uniform aggregates made of glauconite microparticles and polyaniline matrix. The results of X-ray powder diffraction suggest that: (1) citric acid used for the polymerisation of aniline causes formation of emeraldine salt where macromolecular ordering in the amorphous polymer takes place; (2) no chemical interaction between glauconite and emeraldine takes place in the prepared composite. FT-IR spectra of the prepared polymer and composite show features indicating all the functional groups that are present in the diiminoquinone–diaminobenzene state of polyaniline. Thermal stability of the composite was higher than the prepared polymer suggesting the occurrence of an interphase interaction between glauconite and emeraldine. After pyrolysis in purified nitrogen the composite still remained glauconite, and ε-Fe3N together with amorphous and graphitic carbon were found as reaction products. The values of electrical conductivity and magnetization of the composite suggest that optimization of these values might be achieved based upon the relationship between glauconite and polyaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharp KG (1998) Adv Mater 10(15):1243

    Article  CAS  Google Scholar 

  2. MacDiarmid AG (2001) Synth Met 125(1):11

    Article  Google Scholar 

  3. Heeger AJ (2001) Angew Chem Int Ed 40:2591

    Article  CAS  Google Scholar 

  4. Malinauskas A (2001) Polymer 42(9):3957

    Article  CAS  Google Scholar 

  5. Wallace GG, Spinks GM, Kane-Maguire LAP, Teasdale PR (2003) Electroactive polymers. Intelligent materials systems. CRC Press, Boca Raton

    Google Scholar 

  6. Skotheim TA, Reynolds JR (eds) (2007) The handbook of conducting polymers: conjugated polymers processing and applications, 3rd edn. CRC Press, New York

    Google Scholar 

  7. Eftekhari A (ed) (2010) Nanostructured conductive polymers. Wiley, New York

    Google Scholar 

  8. Do Nascimento GM, Temperini MLA (2008) Eur Polym J 44:3501

    Article  Google Scholar 

  9. Binitha NN, Sugunan S (2008) J Appl Polym Sci 107:3367

    Article  CAS  Google Scholar 

  10. Carrado KA (2000) Appl Clay Sci 17:1

    Article  CAS  Google Scholar 

  11. Attia NF, Menemparabath MM, Arepalli S, Geckeler KE (2013) Int J Hydrogen Energy 38:9251

    Article  CAS  Google Scholar 

  12. Sezer E (2008) Conducting nanocomposite systems. In: Erokhin V, Ram M, Yavuz O (eds) The new frontiers of organic and composite nanotechnology. Elsevier, Amsterdam

    Google Scholar 

  13. Wu Q, Xue Z, Qi Z, Wang F (2000) Polymer 41:2029

    Article  CAS  Google Scholar 

  14. Kim BH, Jung JH, Kim JW, Choi HJ, Joo J (2001) Synth Met 121:1311

    Article  CAS  Google Scholar 

  15. Lee D, Char K (2002) Polym Degrad Stab 75:555

    Article  CAS  Google Scholar 

  16. Sun F, Pan Y, Wang J, Wang Z, Hu C, Dong Q (2010) Polym Compos 31:163

    CAS  Google Scholar 

  17. Bober P, Stejskal J, Špírková M, Trchová M, Varga M, Prokeš J (2010) Synth Met 160:2596

    Article  CAS  Google Scholar 

  18. Baldissera AF, Souza JF, Ferreira CA (2013) Synth Met 183:69

    Article  CAS  Google Scholar 

  19. Piromruen P, Kongparakul S, Prasassarakich P (2014) Prog Org Coat 77:691

    Article  CAS  Google Scholar 

  20. Enzel P, Bein T (1989) J Phys Chem 93:6270

    Article  CAS  Google Scholar 

  21. Uma S, Gopalakrishnan J (1995) Mater Sci Eng 34:175

    Article  Google Scholar 

  22. Gök A, Göde F, Türkaslan BE (2006) Mater Sci Eng B 133:20

    Article  Google Scholar 

  23. Sudha JD, Reena VL (2007) Macromol Symp 254:274

    Article  CAS  Google Scholar 

  24. Vitoratos E, Sakkopoulos S, Dalas E, Malkaj P, Anestis Ch (2007) Curr Appl Phys 7:578

    Article  Google Scholar 

  25. Zhang L, Wang T, Liu P (2008) Appl Surf Sci 255:2091

    Article  CAS  Google Scholar 

  26. Liu P (2008) Curr Opin Solid State Mater Sci 12:9

    Article  CAS  Google Scholar 

  27. Li X, Li X, Wang G (2005) Appl Surf Sci 249:266

    Article  CAS  Google Scholar 

  28. Li X, Li X, Dai N, Wang G (2009) Appl Surf Sci 255:8276

    Article  CAS  Google Scholar 

  29. Duran NG, Karakısla M, Aksu L, Sacak M (2009) Mater Chem Phys 118:93

    Article  CAS  Google Scholar 

  30. Bergaya F, Theng BKG, Lagaly G (eds) (2006) Handbook of clay science. Developments in clay science series, vol 1. Elsevier, Amsterdam

    Google Scholar 

  31. Matkovskyy O, Pavlyshyn V, Slyvko Y (2008) The foundations of the mineralogy of Ukraine. Ivan Franko National University of Lviv Press, Lviv (in Ukrainian)

  32. Dalas E, Vitoratos E, Sakkopoulos S, Malkaj P (2004) J Power Sources 128:319

    Article  CAS  Google Scholar 

  33. Bein T (1996) Recent advances and new horizons in zeolite science and technology. In: Chan H, Woo SE, Park SE (eds) Studies in surface science and catalysis. Elsevier Science, Amsterdam, p 102

  34. Rajapakse RMG, Krishantha DMM, Tennakoon DTB, Dias HVR (2006) Electrochim Acta 51:2483

    Article  CAS  Google Scholar 

  35. Koksal E, Afsin B, Tabak A, Caglar B (2011) Spectroscopy Lett 44:77

    Article  CAS  Google Scholar 

  36. Tokarský J, Kulhánková L, Stýskala V, Mamulová Kutláková K, Neuwirthová L, Matějka V, Čapková P (2013) Appl Clay Sci 80–81:126

    Article  Google Scholar 

  37. Prokes J, Stejskal J (2004) Polym Degrad Stab 86:187

    Article  CAS  Google Scholar 

  38. Dan A, Sengupta PK (2007) J Appl Polym Sci 106:2675

    Article  CAS  Google Scholar 

  39. Lissarrague MH, Lamanna ME, D’Accorso NB, Goyanesa S (2012) Synth Met 162:1052

    Article  CAS  Google Scholar 

  40. Hosseini SH, Dabiri M, Ashrafi M (2006) Polym Int 55(9):1081

    Article  CAS  Google Scholar 

  41. Lee H-T, Wang C-C (2008) Polymer Eng Sci 48(30):439

    Article  CAS  Google Scholar 

  42. Kim BH, Jung JH, Hong SH, Kim JW, Choi HJ, Joo J (2001) Curr Appl Phys 1:112

    Article  Google Scholar 

  43. Sudha JD, Sivakala S, Prasanth R, Reena VL, Nair PR (2009) Compos Sci Technol 69:358

    Article  CAS  Google Scholar 

  44. Da Silva AB, Bretas RES (2012) Synth Met 162:1537

    Article  Google Scholar 

  45. Stejskal J, Hlavatá D, Holler P, Trchová M, Prokeś J, Sapurina I (2004) Polym Int 53:294

    Article  CAS  Google Scholar 

  46. Li G, Pang S, Xie G, Wang Z, Peng H, Zhang Z (2006) Polymer 47:1456

    Article  CAS  Google Scholar 

  47. Zhu Y, Li J, Wan M, Jiang L, Wie Y (2007) Macromol Rapid Commun 28:1339

    Article  CAS  Google Scholar 

  48. Subramania A, Devi SL (2008) Polym Adv Technol 19:725

    Article  CAS  Google Scholar 

  49. Yin J, Xia X, Xiang L, Qiao Y, Zhao X (2009) Smart Mater Struct 18:1

    Article  Google Scholar 

  50. Bhandari S, Khastgir D (2014) Mater Lett 135:202

    Article  CAS  Google Scholar 

  51. Wang J, Zhang K, Zhao L (2014) Chem Eng J 239:123

    Article  Google Scholar 

  52. Wu W, Pan D, Li Y, Zhao G, Jing L, Chen S (2015) Electrochim Acta 152:126

    Article  CAS  Google Scholar 

  53. Li D-F, Wang W, Wang H-J, Jia X-S, Wang J-Y (2008) Appl Surf Sci 255:581

    Article  CAS  Google Scholar 

  54. Yatsyshyn MM, Il’kiv ZV, Halamay RI, Struk VM, Reshetnyak OV (2014) Pat. of Ukraine No. 86633, Publ. Jan. 10, 2014

  55. Yatsyshyn M, Grynda Y, Kun’ko A, Kulyk Y (2010) Visnyk Lviv Univ Ser Chem 51:395

    Google Scholar 

  56. O’Connor CJ, Lippard SJ (eds) (1982) Magnetic susceptibility measurements. Progress in inorganic chemistry. Wiley, New York

    Google Scholar 

  57. Carlin RL (1986) Magnetochemistry. Springer, Berlin

    Book  Google Scholar 

  58. Sapurina I, Stejskal J (2008) Polym Int 57:1295

    Article  CAS  Google Scholar 

  59. Zhang Z, Deng J, Wan M (2009) Mater Chem Phys 115:275

    Article  CAS  Google Scholar 

  60. Cheng F, Tang W, Li C, Chen J, Liu H, Shen P, Dou S (2006) Chem Eur J 12:3082

    Article  CAS  Google Scholar 

  61. Li J, Jia Q, Zhu J, Zheng M (2008) Polym Int 57:337

    Article  CAS  Google Scholar 

  62. Shaikh SMF, Lim JY, Mane RS, Han S-H, Ambade SB, Joo O-S (2012) Synth Met 162:1303

    Article  CAS  Google Scholar 

  63. Gardolinski JE, Carrera LCM, Cantao MP, Wypych F (2000) J Mater Sci 35(12):3113

    Article  CAS  Google Scholar 

  64. Li X (2009) Electrochim Acta 54:5634

    Article  CAS  Google Scholar 

  65. Lin J, Tang Q, Wu J, Sun H (2008) Sci. Technol. Adv. Mater. 9(2):025010

    Article  Google Scholar 

  66. Shawabkeh RA, Tutunji ME (2003) Appl Clay Sci 24(12):111

    Article  CAS  Google Scholar 

  67. Yatsyshyn MM, Reshetnyak OV, Dumanchuk NY, Kulyk YO, Fartushok NV, Stadnyk YV (2013) Chem Chem Technol 7:441

    CAS  Google Scholar 

  68. Li G, Zhang C, Peng H (2008) Macromol Rapid Commun 29:63

    Article  Google Scholar 

  69. Smith AL (1982) Applied infrared spectroscopy. Fundamentals, techniques, and analytical problem-solving. Wiley, New York

    Google Scholar 

  70. Niu ZW, Yang ZZ, Hu ZB, Lu YF, Han CC (2003) Adv Funct Mater 13:949

    Article  CAS  Google Scholar 

  71. Li X, Wang G, Li X (2005) Surf Coat Technol 197(1):56

    Article  CAS  Google Scholar 

  72. Palaniappan A, John C, Amarnath V, Rao J (2004) J Mol Catal A Chem 218:47

    Article  CAS  Google Scholar 

  73. Blinova NV, Stejskal J, Trchova M, Prokes J, Omastovác M (2007) Eur Polym J 43:2331

    Article  CAS  Google Scholar 

  74. Chen J, Xu Y, Zheng Y, Dai L, Wu H (2008) C R Chim 11:84

    Article  CAS  Google Scholar 

  75. Dondi D, Zeffiro A, Speltini A, Tomasi C, Vadivel D, Buttafava A (2014) J Anal Appl Pyrolysis 107:53

    Article  CAS  Google Scholar 

  76. Deng J, He CL, Peng Y, Wang J, Long X, Li P (2003) Synth Met 139:295

    Article  CAS  Google Scholar 

  77. Bian C, Yu Y, Xue G (2007) J Appl Polym Sci 104:21

    Article  CAS  Google Scholar 

  78. Basiuk VA, Douda J (2000) J Anal Appl Pyrolysis 55:235

    Article  CAS  Google Scholar 

  79. Hacaloglu J, Argin E, Kucukyavuz Z (2008) J Appl Polym Sci 108:400

    Article  CAS  Google Scholar 

  80. Borsa D (2004) Nitride-based insulating and magnetic thin films and multilayers. PhD thesis. University of Groningen, The Netherlands

  81. Qi Y, Zhang J, Qiu S, Sun L, Xu F, Zhu M, Ouyang L, Sun D (2009) J Therm Anal Calorim 98:533

    Article  CAS  Google Scholar 

  82. Sedenkova I, Trchova M, Stejskal J (2008) Polym Degrad Stab 93(12):2147

    Article  CAS  Google Scholar 

  83. Ciric-Marjanovic G, Trchova M, Stejskal J (2008) J Raman Spectrosc 39(10):1375

    Article  CAS  Google Scholar 

  84. Ferrari AC (2007) Solid State Commun 143:47

    Article  CAS  Google Scholar 

  85. Pierard N, Fonseca A, Colomer JF, Bossuot C, Benoit JM, Van Tendeloo G, Pirard JP, Nagy JB (2004) Carbon 42:1691

    Article  CAS  Google Scholar 

  86. Harrison RJ, Dunin-Borkowski RE, Putnis A (2002) Proc Natl Acad Sci 99(26):16556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was financially supported by Cariplo2013-0592 project received by Cariplo Italian Foundation and XФ-149Ф project of the Ministry of Education and Science of Ukraine. All authors affiliated to Department of Chemistry and CSGI acknowledge financial support from CSGI (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Saldan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatsyshyn, M., Saldan, I., Milanese, C. et al. Properties of Glauconite/Polyaniline Composite Prepared in Aqueous Solution of Citric Acid. J Polym Environ 24, 196–205 (2016). https://doi.org/10.1007/s10924-016-0763-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0763-x

Keywords

Navigation