Skip to main content
Log in

Effect of Hexadecyl Lactate as Plasticizer on the Properties of Poly(l-lactide) Films for Food Packaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, poly(l-lactide) (PLA) films were fabricated by melt processing and the plasticizing effect of hexadecyl lactate (HL) (0, 5, 7.5, 10, and 12.5 wt% on PLA were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, tensile, transparency, and water vapor permeability tests. The SEM analysis revealed that PLA with 10 wt% HL appeared uniform with extra small bumps, confirmed the interaction between PLA and HL. The thermal analysis revealed a glass transition temperature of 57.4 °C for neat PLA film, but the addition of HL elicited a decrease in the temperature of the peak (43.8 °C). The incorporation of plasticizer into PLA resulted in the increase of elongation at break, as well as the decrease of tensile strength and tensile modulus. Even though a decrease in transparency was recorded, the PLA/HL blend films appeared transparent by visually observation. The water vapor permeability of PLA/HL blend films increased with the increase of HL. The PLA/HL blend films could effectively extend the shelf-life of fresh-cut pears as the commercial low density polyethylene films. The results indicated that the properties of PLA films can be modified with the addition of HL and PLA/HL blend films could serve as an alternative as food packaging materials to reduce environmental problems associated with synthetic packaging films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Joseph CS, Prashanth KH, Rastogi NK, Indiramma AR, Reddy SY, Raghavarao KSMS (2011) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Tech 4(7):1179–1185

    Article  CAS  Google Scholar 

  2. Voon HC, Bhat R, Easa AM, Liong MT, Karim AA (2012) Effect of addition of halloysite nanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food Bioprocess Tech 5(5):1766–1774

    Article  CAS  Google Scholar 

  3. Rodríguez-Núñez JR, Madera-Santana TJ, Sánchez-Machado DI, López-Cervantes J, Valdez HS (2014) Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J Polym Environ 22(1):41–51

  4. Burgos N, Martino VP, Jiménez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658

    Article  CAS  Google Scholar 

  5. Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42(2):612–617

    Article  CAS  Google Scholar 

  6. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956

    Article  CAS  Google Scholar 

  7. Rodríguez-Llamazares S, Rivas BL, Pérez M, Perrin-Sarazin F (2012) Poly(ethylene glycol) as a compatibilizer and plasticizer of poly(lactic acid)/clay nanocomposites. High Perform Polym 24(4):254–261

    Article  Google Scholar 

  8. Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97(9):1822–1828

    Article  CAS  Google Scholar 

  9. Tanoue S, Hasook A, Iemoto Y, Unryu T (2006) Preparation of poly(lactic acid)/poly(ethylene glycol)/organoclay nanocomposites by melt compounding. Polym Compos 27(3):256–263

    Article  CAS  Google Scholar 

  10. Ren Z, Dong L, Yang Y (2006) Dynamic mechanical and thermal properties of plasticized poly(lactic acid). J Appl Polym Sci 101(3):1583–1590

    Article  CAS  Google Scholar 

  11. Ljungberg N, Andersson T, Wesslén B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88(14):3239–3247

    Article  CAS  Google Scholar 

  12. Ge H, Yang F, Hao Y, Wu G, Zhang H, Dong L (2013) Thermal, mechanical, and rheological properties of plasticized poly(L-lactic acid). J Appl Polym Sci 127(4):2832–2839

    Article  CAS  Google Scholar 

  13. Wang Y, Qin Y, Zhang Y, Yuan M, Li H, Yuan M (2014) Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. Int J Biol Macromol 67:58–63

    Article  CAS  Google Scholar 

  14. Clary JJ, Feron VJ, Van Velthuijsen JA (1998) Safety assessment of lactate esters. Regul Toxicol Pharm 27(2):88–97

    Article  CAS  Google Scholar 

  15. Zhang J, Liu M, Jin H, Deng L, Xing J, Dong A (2010) In vitro enhancement of lactate esters on the percutaneous penetration of drugs with different lipophilicity. Aaps Pharmscitech 11(2):894–903

    Article  CAS  Google Scholar 

  16. Crisologo NM, Taskovich LT, Yum SI (1997) Monoglyceride/lactate ester permeation enhancer for codelivery of steroids. U.S. Patent 5,686,097[P]. 11 Nov 1997

  17. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66(8):1507–1513

    Article  CAS  Google Scholar 

  18. Qin Y, Liu S, Zhang Y, Yuan M, Li H, Yuan M (2014) Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide). Int J Biol Macromol 70:327–333

    Article  CAS  Google Scholar 

  19. Yang SL, Wu ZH, Meng B, Yang W (2009) The effects of dioctyl phthalate plasticization on the morphology and thermal, mechanical, and rheological properties of chemical crosslinked polylactide. J Polym Sci Polym Phys 47(12):1136–1145

    Article  CAS  Google Scholar 

  20. Zhai CP, Liu XJ, Yuan JF, Gao QY (2013) Synthesis, characterization, and drug delivery research of an amphiphilic biodegradable star-shaped block copolymer. Polym Bull 70(2):419–429

    Article  CAS  Google Scholar 

  21. Park PJ, Je JY, Kim SK (2004) Free radical scavenging activities of differently deacetylated chitosan using an ESR spectrometer. Carbohydr Polym 55(1):17–22

    Article  CAS  Google Scholar 

  22. Wang L, Dong Y, Men H, Tong J, Zhou J (2013) Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll 32(1):35–41

    Article  Google Scholar 

  23. Han JH, Floros JD (1997) Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J Plast Films Sheet 13(4):287–298

    CAS  Google Scholar 

  24. Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Res Int 42(7):762–769

    Article  Google Scholar 

  25. Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll 27(1):220–227

    Article  CAS  Google Scholar 

  26. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(L-lactide) with poly(propylene glycol). Biomacromolecules 7(7):2128–2135

    Article  CAS  Google Scholar 

  27. Yu F, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2013) Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydr Polym 91(1):253–261

    Article  CAS  Google Scholar 

  28. Jagadeesh D, Kumar BP, Sudhakara P, Prasad CV, Rajulu AV, Song JI (2013) Preparation and properties of propylene glycol plasticized wheat protein isolate novel green films. J Polym Environ 21(4):930–936

    Article  CAS  Google Scholar 

  29. Martino VP, Jiménez A, Ruseckaite RA (2009) Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. J Appl Polym Sci 112(4):2010–2018

    Article  CAS  Google Scholar 

  30. Gao C, Ma H, Liu X, Yu L, Chen L, Liu H, Li X, Simon GP (2013) Effects of thermal treatment on the microstructure and thermal and mechanical properties of poly(lactic acid) fibers. Polym Eng Sci 53(5):976–981

    Article  CAS  Google Scholar 

  31. Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA–PHB-Limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270

    Article  CAS  Google Scholar 

  32. Nur Hanani ZA, McNamara J, Roos YH, Kerry JP (2013) Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocoll 31(2):264–269

    Article  CAS  Google Scholar 

  33. Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32(4):760–768

    Article  CAS  Google Scholar 

  34. González A, Alvarez Igarzabal CI (2013) Soy protein-poly(lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll 33(2):289–296

    Article  Google Scholar 

  35. Jamshidian M, Tehrany EA, Imran M, Akhtar MJ, Cleymand F, Desobry S (2012) Structural, mechanical and barrier properties of active PLA-antioxidant films. J Food Eng 110(3):380–389

    Article  CAS  Google Scholar 

  36. Laboulfie F, Hémati M, Lamure A, Diguet S (2013) Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of composite coating films. Powder Technol 238:14–19

    Article  CAS  Google Scholar 

  37. Fabra MJ, Lopez-Rubio A, Lagaron JM (2013) High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocoll 32(1):106–114

    Article  CAS  Google Scholar 

  38. Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2008) Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biol Technol 50(1):87–94

    Article  CAS  Google Scholar 

  39. Gorny JR, Hess-Pierce B, Cifuentes RA, Kader AA (2002) Quality changes in fresh-cut pear slices as affected by controlled atmospheres and chemical preservatives. Postharvest Biol Technol 24(3):271–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31160198, 31360417), the Applied Basic Research Key Project of Yunnan (2013FA039), the Applied Basic Research Project of Yunnan (2011FB084), and the High-End Technology Professionals Introduction Plan in Yunnan province (2010CI119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Wang, Y., Wu, Y. et al. Effect of Hexadecyl Lactate as Plasticizer on the Properties of Poly(l-lactide) Films for Food Packaging Applications. J Polym Environ 23, 374–382 (2015). https://doi.org/10.1007/s10924-014-0702-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0702-7

Keywords

Navigation